Suppr超能文献

源自硫代葡萄糖苷的异硫氰酸盐会影响真菌细胞中的线粒体功能,并引发生长恢复所需的氧化应激反应。

Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery.

作者信息

Calmes Benoit, N'Guyen Guillaume, Dumur Jérome, Brisach Carlos A, Campion Claire, Iacomi Béatrice, Pigné Sandrine, Dias Eva, Macherel David, Guillemette Thomas, Simoneau Philippe

机构信息

Université d'Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAV Angers, France.

Universitatea de Ştiinţe Agronomice şi Medicinǎ Veterinarǎ Bucureşti Bucharest, Romania.

出版信息

Front Plant Sci. 2015 Jun 3;6:414. doi: 10.3389/fpls.2015.00414. eCollection 2015.

Abstract

Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola.

摘要

硫代葡萄糖苷是十字花科植物的次生代谢产物,长期以来一直被视为抵御病原体入侵的化学屏障。异硫氰酸酯(ITCs)是硫代葡萄糖苷的分解产物,对多种真菌物种的生长具有负面影响。我们以芸苔链格孢(一种专门侵染芸苔属植物的病原体)为模式生物,探索了ITCs导致真菌细胞死亡的机制。将该真菌暴露于ITCs中会导致其耗氧率降低、活性氧(ROS)在细胞内积累以及线粒体膜去极化。我们还发现,在存在ITCs的情况下,氧化应激反应的两个主要调节因子,即丝裂原活化蛋白激酶AbHog1和转录因子AbAP1被激活。一旦被ITC衍生的ROS激活,就会发现AbAP1会促进不同氧化应激反应基因的表达。这种反应可能在保护真菌免受ITCs侵害方面发挥重要作用,因为发现缺乏AbHog1或AbAP1的突变体对这些代谢产物高度敏感。此外,这些基因的缺失伴随着对芸苔属植物侵染力的显著下降。我们认为,针对ITC衍生的氧化应激的强大保护反应可能是像芸苔链格孢这样的十字花科专性坏死营养菌成功感染寄主植物的关键适应机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bc8/4452805/897bd7651e73/fpls-06-00414-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验