Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA.
Pharm Res. 2017 Dec;34(12):2842-2861. doi: 10.1007/s11095-017-2265-5. Epub 2017 Sep 27.
The aim of this research was to study the interplay of solid and solution state phase transformations during the dissolution of ritonavir (RTV) amorphous solid dispersions (ASDs).
RTV ASDs with polyvinylpyrrolidone (PVP), polyvinylpyrrolidone vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared at 10-50% drug loading by solvent evaporation. The miscibility of RTV ASDs was studied before and after exposure to 97% relative humidity (RH). Non-sink dissolution studies were performed on fresh and moisture-exposed ASDs. RTV and polymer release were monitored using ultraviolet-visible spectroscopy. Techniques including fluorescence spectroscopy, confocal imaging, scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and nanoparticle tracking analysis (NTA) were utilized to monitor solid and the solution state phase transformations.
All RTV-PVP and RTV-PVPVA ASDs underwent moisture-induced amorphous-amorphous phase separation (AAPS) on high RH storage whereas RTV-HPMCAS ASDs remained miscible. Non-sink dissolution of PVP- and PVPVA-based ASDs at low drug loadings led to rapid RTV and polymer release resulting in concentrations in excess of amorphous solubility, liquid-liquid phase separation (LLPS) and amorphous nanodroplet formation. High drug loading PVP- and PVPVA-based ASDs did not exhibit LLPS upon dissolution as a consequence of extensive AAPS in the hydrated ASD matrix. All RTV-HPMCAS ASDs led to LLPS upon dissolution.
RTV ASD dissolution is governed by a competition between the dissolution rate and the rate of phase separation in the hydrated ASD matrix. LLPS was observed for ASDs where the drug release was polymer controlled and only ASDs that remained miscible during the initial phase of dissolution led to LLPS. Techniques such as fluorescence spectroscopy, confocal imaging and SEM were useful in understanding the phase behavior of ASDs upon hydration and dissolution and were helpful in elucidating the mechanism of generation of amorphous nanodroplets.
本研究旨在研究利托那韦(RTV)无定形固体分散体(ASD)在溶解过程中固-液相间转变的相互作用。
采用溶剂蒸发法制备了载药量为 10%-50%的 RTV 与聚乙烯吡咯烷酮(PVP)、聚乙烯吡咯烷酮醋酸乙烯酯(PVPVA)和醋酸羟丙甲基纤维素琥珀酸酯(HPMCAS)的 ASD。在暴露于 97%相对湿度(RH)前后研究了 RTV ASD 的混溶性。对新鲜和受潮 ASD 进行了非溶出性溶解研究。采用紫外-可见光谱法监测 RTV 和聚合物的释放情况。采用荧光光谱法、共聚焦成像、扫描电子显微镜(SEM)、原子力显微镜(AFM)、差示扫描量热法(DSC)和纳米颗粒跟踪分析(NTA)等技术监测固-液相间的转变。
所有 RTV-PVP 和 RTV-PVPVA ASD 在高 RH 储存条件下均发生了由水分引起的无定形-无定形相分离(AAPS),而 RTV-HPMCAS ASD 则保持混溶性。低载药量 PVP 和 PVPVA 基 ASD 的非溶出性溶解导致 RTV 和聚合物快速释放,导致浓度超过无定形溶解度,发生液-液相分离(LLPS)和无定形纳米液滴形成。由于水合 ASD 基质中广泛的 AAPS,高载药量 PVP 和 PVPVA 基 ASD 在溶解时并未发生 LLPS。所有 RTV-HPMCAS ASD 在溶解时均导致 LLPS。
RTV ASD 的溶解由水合 ASD 基质中溶解速率和相分离速率之间的竞争决定。当药物释放受聚合物控制时,观察到 ASD 发生 LLPS,只有在溶解初始阶段保持混溶性的 ASD 才会导致 LLPS。荧光光谱法、共聚焦成像和 SEM 等技术有助于理解 ASD 在水合和溶解过程中的相行为,并有助于阐明无定形纳米液滴生成的机制。