Pogorilyi Roman P, Pylypchuk Ievgen, Melnyk Inna V, Zub Yurii L, Seisenbaeva Gulaim A, Kessler Vadim G
Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17, General Naumov Street, 03164 Kyiv, Ukraine.
Department of Molecular Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
Nanomaterials (Basel). 2017 Sep 28;7(10):298. doi: 10.3390/nano7100298.
Sol-gel technology is a versatile tool for preparation of complex silica-based materials with targeting functions for use as adsorbents in water purification. Most efficient removal of organic pollutants is achieved by using enzymatic reagents grafted on nano-carriers. However, enzymes are easily deactivated in the presence of heavy metal cations. In this work, we avoided inactivation of immobilized urease by Cu (II) and Cd (II) ions using magnetic nanoparticles provided with additional complexonate (diethylene triamine pentaacetic acid or DTPA) functions. Obtained nanomaterials were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). According to TGA, the obtained Fe₃O₄/SiO₂-NH₂-DTPA nanoadsorbents contained up to 0.401 mmol/g of DTPA groups. In the concentration range = 0-50 mmol/L, maximum adsorption capacities towards Cu (II) and Cd (II) ions were 1.1 mmol/g and 1.7 mmol/g, respectively. Langmuir adsorption model fits experimental data in concentration range = 0-10 mmol/L. The adsorption mechanisms have been evaluated for both of cations. Crosslinking of 5 wt % of immobilized urease with glutaraldehyde prevented the loss of the enzyme in repeated use of the adsorbent and improved the stability of the enzymatic function leading to unchanged activity in at least 18 cycles. Crosslinking of 10 wt % urease on the surface of the particles allowed a decrease in urea concentration in 20 mmol/L model solutions to 2 mmol/L in up to 10 consequent decomposition cycles. Due to the presence of DTPA groups, Cu ions in concentration 1 µmol/L did not significantly affect the urease activity. Obtained magnetic Fe₃O₄/SiO₂-NH₂-DTPA-Urease nanocomposite sorbents revealed a high potential for urease decomposition, even in presence of heavy metal ions.
溶胶 - 凝胶技术是一种用途广泛的工具,可用于制备具有靶向功能的复杂二氧化硅基材料,用作水净化中的吸附剂。通过使用接枝在纳米载体上的酶试剂,可以最有效地去除有机污染物。然而,酶在重金属阳离子存在下很容易失活。在这项工作中,我们使用具有额外络合剂(二乙烯三胺五乙酸或DTPA)功能的磁性纳米颗粒,避免了固定化脲酶被Cu(II)和Cd(II)离子失活。通过傅里叶变换红外光谱(FTIR)、热重分析(TGA)和扫描电子显微镜(SEM)对所得纳米材料进行了表征。根据TGA,所得的Fe₃O₄/SiO₂-NH₂-DTPA纳米吸附剂含有高达0.401 mmol/g的DTPA基团。在浓度范围为0 - 50 mmol/L时,对Cu(II)和Cd(II)离子的最大吸附容量分别为1.1 mmol/g和1.7 mmol/g。Langmuir吸附模型适用于浓度范围为0 - 10 mmol/L的实验数据。已经对两种阳离子的吸附机制进行了评估。用戊二醛交联5 wt%的固定化脲酶可防止在吸附剂重复使用过程中酶的损失,并提高酶功能的稳定性,导致在至少18个循环中活性不变。在颗粒表面交联10 wt%的脲酶可使20 mmol/L模型溶液中的尿素浓度在多达10个连续分解循环中降至2 mmol/L。由于存在DTPA基团,浓度为1 µmol/L的Cu离子不会显著影响脲酶活性。所得的磁性Fe₃O₄/SiO₂-NH₂-DTPA - 脲酶纳米复合吸附剂即使在存在重金属离子的情况下也显示出脲酶分解的高潜力。