文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Surface Functionalization of Graphene Oxide with Hyperbranched Polyamide-Amine and Microcrystalline Cellulose for Efficient Adsorption of Heavy Metal Ions.

作者信息

Liu Zhihang, Wang Qian, Huang Xiujie, Qian Xueren

机构信息

Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China.

出版信息

ACS Omega. 2022 Mar 23;7(13):10944-10954. doi: 10.1021/acsomega.1c06647. eCollection 2022 Apr 5.


DOI:10.1021/acsomega.1c06647
PMID:35415369
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8991912/
Abstract

Graphene oxide (GO)-based adsorbents have received attention in the removal of heavy metal ions in wastewater due to its large specific surface area and oxygen-containing functional groups, which can enhance the interaction between GO and heavy metal ions. Many researchers are seeking economical and effective strategies to further improve the adsorption capacity of GO. In this study, hyperbranched polymers and cellulose were used to surface functionalize GO for the efficient adsorption of heavy metal ions. First, hyperbranched polyamide-amine (HPAMAM) functionalized GO was fabricated by the formation of an amide bond between the carboxyl group of GO and the amino group of HPAMAM, increasing the active groups on the GO surface and enhancing the affinity with heavy metal ions. Then, dialdehyde cellulose (DAC) obtained through the oxidation of microcrystalline cellulose was grafted onto GO/HPAMAM by forming a Schiff-based structure between the amino group of HPAMAM and aldehyde group of DAC. Interestingly, DAC formed micro/nano bumps on GO, which was beneficial to increase the hydroxyl number and contact area with heavy metal ions. The Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) results confirmed the successful synthesis of GO/HPAMAM/DAC. The obtained GO/HPAMAM/DAC adsorbent exhibited strong adsorption capacity and good cycle stability for heavy metal ions. The maximum adsorption capacities of Pb(II), Cd(II), and Cu(II) were 680.3, 418.4, and 280.1 mg/g at 298 K, which were better than those of most adsorbents reported. A pseudo-second-order kinetic model could well-describe the Pb(II), Cd(II), and Cu(II) adsorption onto GO/HPAMAM/DAC, and the equilibrium data fitted well with the Langmuir isotherm model. The adsorption of Pb(II), Cd(II), and Cu(II) was mainly attributed to the chelation or complexation of nitrogen- and oxygen-containing groups on the GO/HAPAMAM/DAC adsorbent. This study may provide a novel strategy for improving the adsorption performance of GO with hyperbranched polymers and cellulose.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/48cefbb0fed0/ao1c06647_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/96226f4f18fe/ao1c06647_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/39001472f9a2/ao1c06647_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/e78b296a10ba/ao1c06647_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/0b46a4fb61f8/ao1c06647_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/42c48f834642/ao1c06647_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/97576499a56c/ao1c06647_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/241518f0c7f9/ao1c06647_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/7d92371380b2/ao1c06647_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/d3bb91e42346/ao1c06647_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/277e62dfb0cb/ao1c06647_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/48cefbb0fed0/ao1c06647_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/96226f4f18fe/ao1c06647_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/39001472f9a2/ao1c06647_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/e78b296a10ba/ao1c06647_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/0b46a4fb61f8/ao1c06647_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/42c48f834642/ao1c06647_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/97576499a56c/ao1c06647_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/241518f0c7f9/ao1c06647_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/7d92371380b2/ao1c06647_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/d3bb91e42346/ao1c06647_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/277e62dfb0cb/ao1c06647_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f762/8991912/48cefbb0fed0/ao1c06647_0011.jpg

相似文献

[1]
Surface Functionalization of Graphene Oxide with Hyperbranched Polyamide-Amine and Microcrystalline Cellulose for Efficient Adsorption of Heavy Metal Ions.

ACS Omega. 2022-3-23

[2]
Preparation of dialdehyde cellulose graftead graphene oxide composite and its adsorption behavior for heavy metals from aqueous solution.

Carbohydr Polym. 2019-2-18

[3]
Sustainable grafted chitosan-dialdehyde cellulose with high adsorption capacity of heavy metal.

BMC Chem. 2023-9-20

[4]
Adsorption of divalent metal ions from aqueous solutions using graphene oxide.

Dalton Trans. 2013-4-28

[5]
Graphene oxide-terminated hyperbranched amino polymer-carboxymethyl cellulose ternary nanocomposite for efficient removal of heavy metals from aqueous solutions.

Int J Biol Macromol. 2020-1-25

[6]
Novel diaminoguanidine functionalized cellulose: synthesis, characterization, adsorption characteristics and application for ICP-AES determination of copper(II), mercury(II), lead(II) and cadmium(II) from aqueous solutions.

BMC Chem. 2022-8-30

[7]
Cadmium and copper heavy metal treatment from water resources by high-performance folic acid-graphene oxide nanocomposite adsorbent and evaluation of adsorptive mechanism using computational intelligence, isotherm, kinetic, and thermodynamic analyses.

Environ Sci Pollut Res Int. 2020-8-3

[8]
Facile Synthesis of Cross-linked Hyperbranched Polyamidoamines Dendrimers for Efficient Hg(Ⅱ) Removal From Water.

Front Chem. 2021-9-14

[9]
Synthesis of a nitrogen-rich dendrimer grafted on magnetic nanoparticles for efficient removal of Pb(ii) and Cd(ii) ions.

RSC Adv. 2024-10-15

[10]
New hybrid nanocomposite of copper terephthalate MOF-graphene oxide: synthesis, characterization and application as adsorbents for toxic metal ion removal from Sungun acid mine drainage.

Environ Sci Pollut Res Int. 2017-8-11

引用本文的文献

[1]
Pb(II) Adsorption Properties of a Three-Dimensional Porous Bacterial Cellulose/Graphene Oxide Composite Hydrogel Subjected to Ultrasonic Treatment.

Materials (Basel). 2024-6-21

[2]
Removal of Lead from Wastewater Using Synthesized Polyethyleneimine-Grafted Graphene Oxide.

Nanomaterials (Basel). 2023-3-16

本文引用的文献

[1]
Facile one-pot in-situ synthesis of novel graphene oxide-cellulose nanocomposite for enhanced azo dye adsorption at optimized conditions.

Carbohydr Polym. 2020-6-18

[2]
Graphene oxide-terminated hyperbranched amino polymer-carboxymethyl cellulose ternary nanocomposite for efficient removal of heavy metals from aqueous solutions.

Int J Biol Macromol. 2020-1-25

[3]
Covalently linked graphene oxide/reduced graphene oxide-methoxylether polyethylene glycol functionalised silica for scavenging of estrogen: Adsorption performance and mechanism.

Chemosphere. 2019-12-26

[4]
Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions.

Carbohydr Polym. 2019-11-15

[5]
Study of Cu (II), Co (II), Ni (II) and Pb (II) removal from aqueous solutions using magnetic Prussian blue nano-sorbent.

J Hazard Mater. 2019-2-11

[6]
Preparation of graphene oxide/cellulose composites in ionic liquid for Ce (III) removal.

Carbohydr Polym. 2018-12-21

[7]
Oxygen-Promoted Chemical Vapor Deposition of Graphene on Copper: A Combined Modeling and Experimental Study.

ACS Nano. 2018-9-25

[8]
Application of as-synthesised MCM-41 and MCM-41 wrapped with reduced graphene oxide/graphene oxide in the remediation of acetaminophen and aspirin from aqueous system.

J Environ Manage. 2018-1-4

[9]
Cross-linked graphene oxide sheets via modified extracted cellulose with high metal adsorption.

Carbohydr Polym. 2017-5-2

[10]
Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column.

Bioresour Technol. 2017-1-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索