Institute of Chemistry, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel.
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel.
ACS Nano. 2017 Oct 24;11(10):9814-9824. doi: 10.1021/acsnano.7b03131. Epub 2017 Oct 2.
Crystallization is a fundamental and ubiquitous process that is well understood in the case of atoms or small molecules, but its outcome is still hard to predict in the case of nanoparticles or macromolecular complexes. Controlling the organization of virus nanoparticles into a variety of 3D supramolecular architectures is often done by multivalent ions and is of great interest for biomedical applications such as drug or gene delivery and biosensing, as well as for bionanomaterials and catalysis. In this paper, we show that slow dialysis, over several hours, of wild-type Simian Virus 40 (wt SV40) nanoparticle solution against salt solutions containing MgCl, with or without added NaCl, results in wt SV40 nanoparticles arranged in a body cubic center crystal structure with Im3m space group, as a thermodynamic product, in coexistence with soluble wt SV40 nanoparticles. The nanoparticle crystals formed above a critical MgCl concentrations. Reentrant melting and resolubilization of the virus nanoparticles took place when the MgCl concentrations passed a second threshold. Using synchrotron solution X-ray scattering we determined the structures and the mass fraction of the soluble and crystal phases as a function of MgCl and NaCl concentrations. A thermodynamic model, which balances the chemical potentials of the Mg ions in each of the possible states, explains our observations. The model reveals the mechanism of both the crystallization and the reentrant melting and resolubilization and shows that counterion entropy is the main driving force for both processes.
结晶是一种基本且普遍存在的过程,在原子或小分子的情况下,其结果是可以预测的,但在纳米颗粒或大分子复合物的情况下,其结果仍然难以预测。控制病毒纳米颗粒组织成各种 3D 超分子结构通常是通过多价离子来实现的,这对于生物医药应用(如药物或基因传递和生物传感)以及生物纳米材料和催化都具有很大的兴趣。在本文中,我们表明,在数小时的时间内,通过缓慢透析,将野生型猴病毒 40(wt SV40)纳米颗粒溶液对含有 MgCl 的盐溶液进行透析,无论是加入还是不加入 NaCl,都会导致 wt SV40 纳米颗粒以体心立方中心晶体结构排列,Im3m 空间群作为热力学产物,与可溶性 wt SV40 纳米颗粒共存。纳米颗粒晶体在临界 MgCl 浓度以上形成。当 MgCl 浓度通过第二个阈值时,病毒纳米颗粒发生再进入熔化和再溶解。我们使用同步加速器溶液 X 射线散射来确定结构和可溶性和晶体相的质量分数作为 MgCl 和 NaCl 浓度的函数。一个平衡每个可能状态中镁离子化学势的热力学模型解释了我们的观察结果。该模型揭示了结晶和再进入熔化和再溶解的机制,并表明反离子熵是这两个过程的主要驱动力。