Suppr超能文献

用于基于全彩多边形的真实物体全息系统的深度层加权预测方法。

Depth-layer weighted prediction method for a full-color polygon-based holographic system with real objects.

作者信息

Zhao Yu, Kwon Ki-Chul, Piao Yan-Ling, Jeon Seok-Hee, Kim Nam

出版信息

Opt Lett. 2017 Jul 1;42(13):2599-2602. doi: 10.1364/OL.42.002599.

Abstract

We propose a full-color polygon-based holographic system for real three-dimensional (3D) objects using a depth-layer weighted prediction method. The proposed system is composed of four main stages: acquisition, preprocessing, hologram generation, and reconstruction. In the preprocessing stage, the point cloud model is separated into red, green, and blue channels with depth-layer weighted prediction. The color component values are characterized based on the depth information of the real object, then color prediction is derived from the measurement data. The computer-generated holograms reconstruct 3D full-color images with a strong sensation of depth resulting from the polygon approach. The feasibility of the proposed method was confirmed by numerical and optical reconstruction.

摘要

我们提出了一种基于深度层加权预测方法的用于真实三维(3D)物体的全彩多边形全息系统。所提出的系统由四个主要阶段组成:采集、预处理、全息图生成和重建。在预处理阶段,利用深度层加权预测将点云模型分离为红色、绿色和蓝色通道。基于真实物体的深度信息对颜色分量值进行表征,然后从测量数据中得出颜色预测。通过多边形方法,计算机生成的全息图重建出具有强烈深度感的3D全彩图像。所提方法的可行性通过数值和光学重建得到了证实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验