Suppr超能文献

使用贝叶斯模型选择算法在细胞特异性DNA甲基化识别中考虑细胞谱系和性别效应。

Accounting for cell lineage and sex effects in the identification of cell-specific DNA methylation using a Bayesian model selection algorithm.

作者信息

White Nicole, Benton Miles, Kennedy Daniel, Fox Andrew, Griffiths Lyn, Lea Rodney, Mengersen Kerrie

机构信息

School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.

Genomics Research Center, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

PLoS One. 2017 Sep 28;12(9):e0182455. doi: 10.1371/journal.pone.0182455. eCollection 2017.

Abstract

Cell- and sex-specific differences in DNA methylation are major sources of epigenetic variation in whole blood. Heterogeneity attributable to cell type has motivated the identification of cell-specific methylation at the CpG level, however statistical methods for this purpose have been limited to pairwise comparisons between cell types or between the cell type of interest and whole blood. We developed a Bayesian model selection algorithm for the identification of cell-specific methylation profiles that incorporates knowledge of shared cell lineage and allows for the identification of differential methylation profiles in one or more cell types simultaneously. Under the proposed methodology, sex-specific differences in methylation by cell type are also assessed. Using publicly available, cell-sorted methylation data, we show that 51.3% of female CpG markers and 61.4% of male CpG markers identified were associated with differential methylation in more than one cell type. The impact of cell lineage on differential methylation was also highlighted. An evaluation of sex-specific differences revealed differences in CD56+NK methylation, within both single and multi- cell dependent methylation patterns. Our findings demonstrate the need to account for cell lineage in studies of differential methylation and associated sex effects.

摘要

全血中DNA甲基化的细胞特异性和性别特异性差异是表观遗传变异的主要来源。细胞类型导致的异质性促使人们在CpG水平上识别细胞特异性甲基化,然而用于此目的的统计方法仅限于细胞类型之间或感兴趣的细胞类型与全血之间的成对比较。我们开发了一种贝叶斯模型选择算法,用于识别细胞特异性甲基化谱,该算法纳入了共享细胞谱系的知识,并允许同时识别一种或多种细胞类型中的差异甲基化谱。在所提出的方法下,还评估了按细胞类型划分的甲基化性别特异性差异。使用公开可用的细胞分选甲基化数据,我们发现,在鉴定出的女性CpG标记中,51.3%以及男性CpG标记中61.4%与不止一种细胞类型中的差异甲基化有关。细胞谱系对差异甲基化的影响也得到了凸显。对性别特异性差异的评估揭示了在单细胞和多细胞依赖性甲基化模式中CD56+NK甲基化的差异。我们的研究结果表明,在差异甲基化及相关性别效应的研究中需要考虑细胞谱系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/766d/5619727/3295c266b28a/pone.0182455.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验