Suppr超能文献

用于膜蛋白重构的 tethered 脂质组装体的合成与表征(综述)

Synthesis and characterization of tethered lipid assemblies for membrane protein reconstitution (Review).

作者信息

Veneziano Rémi, Rossi Claire, Chenal Alexandre, Brenner Catherine, Ladant Daniel, Chopineau Joël

机构信息

MIT, Biological Engineering Department, Laboratory for Computational Biology and Biophysics, 16-223, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139.

Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie Enzymatique et Cellulaire, Rue Roger Couttolenc, CS 60319, F-60203 Compiègne Cedex, France.

出版信息

Biointerphases. 2017 Sep 28;12(4):04E301. doi: 10.1116/1.4994299.

Abstract

Biological membranes and their related molecular mechanisms are essential for all living organisms. Membranes host numerous proteins and are responsible for the exchange of molecules and ions, cell signaling, and cell compartmentation. Indeed, the plasma membrane delimits the intracellular compartment from the extracellular environment and intracellular membranes. Biological membranes also play a major role in metabolism regulation and cellular physiology (e.g., mitochondrial membranes). The elaboration of membrane based biomimetic systems allows us to reconstitute and investigate, in controlled conditions, biological events occurring at the membrane interface. A whole variety of model membrane systems have been developed in the last few decades. Among these models, supported membranes were developed on various hydrophilic supports. The use of solid supports enables the direct use of surface sensitive techniques (e.g., surface plasmon resonance, quartz crystal microbalance, and atomic force microscopy) to monitor and quantify events occurring at the membrane surface. Tethered bilayer membranes (tBLMs) could be considered as an achievement of the first solid supported membranes described by the McConnell group. Tethered bilayers on solid supports were designed to delimit an inside compartment from an outside one. They were used for measuring interactions with ligands or incorporating large membrane proteins or complexes without interference with the support. In this context, the authors developed an easy concept of versatile tBLMs assembled on amino coated substrates that are formed upon the vesicle fusion rupture process applicable to protein-free vesicles as well as proteoliposomes. The phospholipid bilayer (natural or synthetic lipids) incorporated 5% of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly ethylene glycol-N-hydroxy succinimide to ensure the anchorage of the bilayer to the amino coated surface. The conditions for the formation of tBLMs on amino-coated gold and glass were optimized for protein-free vesicles. This biomimetic membrane delimits an inside "trans" compartment separated from an outside reservoir "cis." Using this tBLM construction, the authors were interested in deciphering two complex molecular mechanisms involving membrane-associated proteins. The first one concerns two mitochondrial proteins, i.e., the porin voltage dependent anion channel (VDAC) embedded in the outer membrane and the nucleotide transporter (adenine nucleotide translocase) that interacts dynamically during mitochondrial pathophysiology. The purified VDAC porin was first reconstituted in proteoliposomes that were subsequently assembled on an amino coated support to form a biomimetic membrane. As a major result, VDAC was reconstituted in this tBLM and calcium channeling was demonstrated across the lipid bilayer. The same two-compartment biomimetic membrane design was further engineered to study the translocation mechanism of a bacterial toxin, the adenylate cyclase toxin, CyaA, from Bordetella pertussis. As a result, the authors developed an elegant in vitro translocation toolkit applicable to potentially a large panel of proteins transported across membranes.

摘要

生物膜及其相关分子机制对所有生物都至关重要。膜上承载着众多蛋白质,负责分子和离子的交换、细胞信号传导以及细胞区室化。实际上,质膜将细胞内区室与细胞外环境及细胞内膜分隔开来。生物膜在代谢调节和细胞生理学(如线粒体膜)中也起着重要作用。基于膜的仿生系统的构建使我们能够在可控条件下重构和研究在膜界面发生的生物事件。在过去几十年中已开发出各种各样的模型膜系统。在这些模型中,支撑膜是在各种亲水性支撑物上开发的。使用固体支撑物能够直接利用表面敏感技术(如表面等离子体共振、石英晶体微天平以及原子力显微镜)来监测和量化在膜表面发生的事件。拴系双层膜(tBLMs)可被视为麦康奈尔团队描述的首个固体支撑膜的成果。固体支撑物上的拴系双层膜旨在将内部区室与外部区室分隔开。它们被用于测量与配体的相互作用或整合大型膜蛋白或复合物,而不会干扰支撑物。在此背景下,作者们提出了一个简单的概念,即基于在氨基涂层底物上组装的通用tBLMs,这些底物是在囊泡融合破裂过程中形成的,适用于无蛋白囊泡以及蛋白脂质体。掺入了5%的1,2 - 二硬脂酰 - sn - 甘油 - 3 - 磷酸乙醇胺 - 聚乙二醇 - N - 羟基琥珀酰亚胺的磷脂双层(天然或合成脂质)可确保双层膜锚定在氨基涂层表面。针对无蛋白囊泡优化了在氨基涂层金和玻璃上形成tBLMs的条件。这种仿生膜界定了一个与外部储库“顺式”分隔开的内部“反式”区室。利用这种tBLM结构,作者们致力于破解涉及膜相关蛋白的两个复杂分子机制。第一个涉及两种线粒体蛋白,即嵌入外膜的孔蛋白电压依赖性阴离子通道(VDAC)以及在线粒体病理生理学过程中动态相互作用的核苷酸转运体(腺嘌呤核苷酸转位酶)。纯化的VDAC孔蛋白首先在蛋白脂质体中重构,随后组装在氨基涂层支撑物上以形成仿生膜。一个主要成果是,VDAC在这种tBLM中得以重构,并且证明了钙可通过脂质双层进行通道转运。同样的双区室仿生膜设计被进一步改造用于研究来自百日咳博德特氏菌的细菌毒素腺苷酸环化酶毒素CyaA的转运机制。结果,作者们开发出了一种精巧的体外转运工具包,可能适用于大量跨膜转运的蛋白质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验