Suppr超能文献

选择性注意无需新皮层。

Selective attention without a neocortex.

机构信息

Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA.

Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, USA.

出版信息

Cortex. 2018 May;102:161-175. doi: 10.1016/j.cortex.2017.08.026. Epub 2017 Sep 1.

Abstract

Selective attention refers to the ability to restrict neural processing and behavioral responses to a relevant subset of available stimuli, while simultaneously excluding other valid stimuli from consideration. In primates and other mammals, descriptions of this ability typically emphasize the neural processing that takes place in the cerebral neocortex. However, non-mammals such as birds, reptiles, amphibians and fish, which completely lack a neocortex, also have the ability to selectively attend. In this article, we survey the behavioral evidence for selective attention in non-mammals, and review the midbrain and forebrain structures that are responsible. The ancestral forms of selective attention are presumably selective orienting behaviors, such as prey-catching and predator avoidance. These behaviors depend critically on a set of subcortical structures, including the optic tectum (OT), thalamus and striatum, that are highly conserved across vertebrate evolution. In contrast, the contributions of different pallial regions in the forebrain to selective attention have been subject to more substantial changes and reorganization. This evolutionary perspective makes plain that selective attention is not a function achieved de novo with the emergence of the neocortex, but instead is implemented by circuits accrued and modified over hundreds of millions of years, beginning well before the forebrain contained a neocortex. Determining how older subcortical circuits interact with the more recently evolved components in the neocortex will likely be crucial for understanding the complex properties of selective attention in primates and other mammals, and for identifying the etiology of attention disorders.

摘要

选择性注意是指将神经加工和行为反应限制在可利用刺激的相关子集上,同时排除其他有效刺激的能力。在灵长类动物和其他哺乳动物中,对这种能力的描述通常强调大脑新皮质中的神经加工。然而,鸟类、爬行动物、两栖动物和鱼类等完全没有新皮质的非哺乳动物也具有选择性注意的能力。在本文中,我们调查了非哺乳动物中选择性注意的行为证据,并回顾了负责这一能力的中脑和前脑结构。选择性注意的祖先形式可能是选择性定向行为,例如捕食和躲避捕食者。这些行为严重依赖于一组包括视顶盖(OT)、丘脑和纹状体在内的皮质下结构,这些结构在脊椎动物进化中高度保守。相比之下,前脑不同大脑皮层区域对选择性注意的贡献经历了更大的变化和重组。这种进化观点清楚地表明,选择性注意不是随着新皮质的出现而全新获得的功能,而是通过数亿年来积累和修改的回路实现的,这些回路早在前脑包含新皮质之前就已经存在。确定较旧的皮质下回路如何与新皮质中最近进化的成分相互作用,可能对于理解灵长类动物和其他哺乳动物中选择性注意的复杂特性以及确定注意力障碍的病因至关重要。

相似文献

1
Selective attention without a neocortex.
Cortex. 2018 May;102:161-175. doi: 10.1016/j.cortex.2017.08.026. Epub 2017 Sep 1.
2
The role of the dorsal thalamus in visual processing and object selection: a case of an attentional system in amphibians.
Eur J Neurosci. 2012 Dec;36(11):3459-70. doi: 10.1111/j.1460-9568.2012.08271.x. Epub 2012 Aug 31.
3
The superior colliculus.
Curr Biol. 2025 Mar 10;35(5):R164-R168. doi: 10.1016/j.cub.2025.01.022.
4
Lesions of the dorsal striatum impair orienting behaviour of salamanders without affecting visual processing in the tectum.
Eur J Neurosci. 2016 Oct;44(8):2581-2592. doi: 10.1111/ejn.13375. Epub 2016 Sep 5.
5
Evolution of neural processing for visual perception in vertebrates.
J Comp Neurol. 2020 Dec 1;528(17):2888-2901. doi: 10.1002/cne.24871. Epub 2020 Feb 13.
7
The role of the optic tectum for visually evoked orienting and evasive movements.
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15272-15281. doi: 10.1073/pnas.1907962116. Epub 2019 Jul 11.
9
Genetic and developmental homology in amniote brains. Toward conciliating radical views of brain evolution.
Brain Res Bull. 2011 Feb 1;84(2):125-36. doi: 10.1016/j.brainresbull.2010.12.003. Epub 2010 Dec 10.
10
Unraveling circuits of visual perception and cognition through the superior colliculus.
Neuron. 2021 Mar 17;109(6):918-937. doi: 10.1016/j.neuron.2021.01.013. Epub 2021 Feb 5.

引用本文的文献

2
Single-nucleus profiling decoding the subcortical visual pathway evolution of vertebrates.
iScience. 2025 Feb 28;28(4):112128. doi: 10.1016/j.isci.2025.112128. eCollection 2025 Apr 18.
3
Neuronal correlates of endogenous selective attention in the endbrain of crows.
Commun Biol. 2025 Mar 21;8(1):470. doi: 10.1038/s42003-025-07914-2.
4
Identification of movie encoding neurons enables movie recognition AI.
Proc Natl Acad Sci U S A. 2024 Nov 26;121(48):e2412260121. doi: 10.1073/pnas.2412260121. Epub 2024 Nov 19.
5
7
Attention: The blue spot reveals one of its secrets.
Neuron. 2024 Jul 3;112(13):2083-2085. doi: 10.1016/j.neuron.2024.06.003.
8
Visual neurons recognize complex image transformations.
bioRxiv. 2024 Jun 10:2024.06.10.598314. doi: 10.1101/2024.06.10.598314.
9
Object-based attention requires monocular visual pathways.
Psychon Bull Rev. 2024 Aug;31(4):1880-1890. doi: 10.3758/s13423-024-02467-7. Epub 2024 Feb 13.
10
Spatial and single-nucleus transcriptomics decoding the molecular landscape and cellular organization of avian optic tectum.
iScience. 2024 Jan 26;27(2):109009. doi: 10.1016/j.isci.2024.109009. eCollection 2024 Feb 16.

本文引用的文献

1
Endogenous orienting in the archer fish.
Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7577-7581. doi: 10.1073/pnas.1700574114. Epub 2017 Jul 3.
2
The Basal Ganglia Over 500 Million Years.
Curr Biol. 2016 Oct 24;26(20):R1088-R1100. doi: 10.1016/j.cub.2016.06.041.
3
Lesions of the dorsal striatum impair orienting behaviour of salamanders without affecting visual processing in the tectum.
Eur J Neurosci. 2016 Oct;44(8):2581-2592. doi: 10.1111/ejn.13375. Epub 2016 Sep 5.
4
Feeding State Modulates Behavioral Choice and Processing of Prey Stimuli in the Zebrafish Tectum.
Neuron. 2016 May 4;90(3):596-608. doi: 10.1016/j.neuron.2016.03.014. Epub 2016 Apr 14.
5
Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish.
Neuron. 2016 Feb 3;89(3):613-28. doi: 10.1016/j.neuron.2015.12.021. Epub 2016 Jan 21.
6
Sensorimotor decision making in the zebrafish tectum.
Curr Biol. 2015 Nov 2;25(21):2804-2814. doi: 10.1016/j.cub.2015.09.055. Epub 2015 Oct 22.
7
Vertebrate brains and evolutionary connectomics: on the origins of the mammalian 'neocortex'.
Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0060.
8
Pallial patterning and the origin of the isocortex.
Front Neurosci. 2015 Oct 14;9:377. doi: 10.3389/fnins.2015.00377. eCollection 2015.
9
Levels of homology and the problem of neocortex.
Annu Rev Neurosci. 2015 Jul 8;38:351-68. doi: 10.1146/annurev-neuro-071714-033911.
10
A Visual Pathway for Looming-Evoked Escape in Larval Zebrafish.
Curr Biol. 2015 Jul 20;25(14):1823-34. doi: 10.1016/j.cub.2015.06.002. Epub 2015 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验