Agarwal Garvit, Valisetty Ramakrishna R, Namburu Raju R, Rajendran Arunachalam M, Dongare Avinash M
Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut, 06269, USA.
Computational and Information Sciences Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland, 21005, USA.
Sci Rep. 2017 Sep 28;7(1):12376. doi: 10.1038/s41598-017-12340-4.
A long-standing problem in modeling of shock response of metals is the ability to model defect nucleation and evolution mechanisms during plastic deformation and failure at the mesoscales. This paper demonstrates the capability of the "quasi-coarse-grained dynamics" (QCGD) simulation method to unravel microstructural evolution of polycrystalline Al microstructures at the mesoscales. The various QCGD simulations discussed here investigate the shock response of Al microstructures comprising of grain sizes ranging from 50 nm to 3.20 µm and correspond to system sizes ranging from 150 nm to 9.6 µm, respectively. The QCGD simulations are validated by demonstrating the capability to retain atomistic characteristics of the wave propagation behavior, plastic deformation mechanisms (dislocation nucleation, dissociation/recombination behavior, dislocation interactions/reactions), evolution of damage (voids), and evolution of temperature during shock loading. The capability to unravel the mesoscale evolution of microstructure is demonstrated by investigating the effect of grain size, shock pulse and system size on the shock response and spall failure of the metal. The computed values of spall strengths predicted using the QCGD simulations agree very well with the trend predicted by MD simulations and a strain rate dependence of the spall strength is proposed that fits the experimentally available values in the literature.
金属冲击响应建模中一个长期存在的问题是,在介观尺度下对塑性变形和失效过程中的缺陷形核与演化机制进行建模的能力。本文展示了“准粗粒动力学”(QCGD)模拟方法在揭示多晶铝微观结构在介观尺度下微观结构演化方面的能力。这里讨论的各种QCGD模拟研究了晶粒尺寸从50纳米到3.20微米的铝微观结构的冲击响应,分别对应于系统尺寸从150纳米到9.6微米。通过展示该方法保留波传播行为、塑性变形机制(位错形核、解离/复合行为、位错相互作用/反应)、损伤(空洞)演化以及冲击加载过程中温度演化的原子特征的能力,对QCGD模拟进行了验证。通过研究晶粒尺寸、冲击脉冲和系统尺寸对金属冲击响应和层裂失效的影响,展示了揭示微观结构介观尺度演化的能力。使用QCGD模拟预测的层裂强度计算值与分子动力学模拟预测的趋势非常吻合,并提出了层裂强度的应变率依赖性,该依赖性与文献中实验可得的值相符。