Suppr超能文献

银鲶主要肝脏谷胱甘肽转移酶的催化作用通过快速平衡有序随机机制进行。

Catalysis of Silver catfish Major Hepatic Glutathione Transferase proceeds via rapid equilibrium sequential random Mechanism.

作者信息

Kolawole Ayodele O

机构信息

Department of Biochemistry, The Federal University of Technology, Akure, Nigeria.

出版信息

Toxicol Rep. 2016 Jul 1;3:598-607. doi: 10.1016/j.toxrep.2016.06.006. eCollection 2016.

Abstract

Fish hepatic glutathione transferases are connected with the elimination of intracellular pollutants and detoxification of organic micro-pollutants in their aquatic ecosystem. The two-substrate steady state kinetic mechanism of Silver catfish () major hepatic glutathione transferases purified to apparent homogeneity was explored. The enzyme was dimeric enzyme with a monomeric size of 25.6 kDa. Initial-velocity studies and Product inhibition patterns by methyl glutathione and chloride with respect to GSH-CDNB; GSH-ρ-nitrophenylacetate; and GSH-Ethacrynic acid all conforms to a rapid equilibrium sequential random Bi Bi kinetic mechanism rather than steady state sequential random Bi Bi kinetic. α was 2.96 ± 0.35 for the model. The pH profile of V/ (with saturating 1-chloro-2,4-dinitrobenzene and variable GSH concentrations) showed apparent pKa value of 6.88 and 9.86. Inhibition studies as a function of inhibitor concentration show that the enzyme is a homodimer and near neutral GST. The enzyme poorly conjugates 4-hydroxylnonenal and cumene hydroperoxide and may not be involved in oxidative stress protection. The GST is unique and overwhelmingly shows characteristics similar to those of homodimeric class Pi GSTs, as was indicated by its kinetic mechanism, substrate specificity and inhibition studies. The rate- limiting step, probably the product release, of the reaction is viscosity-dependent and is consequential if macro-viscosogen or micro-viscosogen.

摘要

鱼类肝脏谷胱甘肽转移酶与水生生态系统中细胞内污染物的清除以及有机微污染物的解毒作用相关。对纯化至表观均一性的银鲶主要肝脏谷胱甘肽转移酶的双底物稳态动力学机制进行了探索。该酶为二聚体酶,单体大小为25.6 kDa。关于甲基谷胱甘肽和氯离子对谷胱甘肽 - 1 - 氯 - 2,4 - 二硝基苯、谷胱甘肽 - 对硝基苯乙酸酯以及谷胱甘肽 - 依他尼酸的初速度研究和产物抑制模式均符合快速平衡顺序随机双底物双产物动力学机制,而非稳态顺序随机双底物双产物动力学机制。该模型的α值为2.96±0.35。V/(在饱和1 - 氯 - 2,4 - 二硝基苯和可变谷胱甘肽浓度下)的pH曲线显示表观pKa值为6.88和9.86。作为抑制剂浓度函数的抑制研究表明,该酶是同二聚体且为近中性的谷胱甘肽转移酶。该酶对4 - 羟基壬烯醛和氢过氧化异丙苯的结合能力较差,可能不参与氧化应激保护。该谷胱甘肽转移酶具有独特性,从其动力学机制、底物特异性和抑制研究来看,绝大多数表现出与同二聚体Pi类谷胱甘肽转移酶相似的特征。反应的限速步骤可能是产物释放,它与粘度有关,无论是大分子增粘剂还是小分子增粘剂都会产生相应影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e828/5615938/c22eebd00294/gr1.jpg

相似文献

1
Catalysis of Silver catfish Major Hepatic Glutathione Transferase proceeds via rapid equilibrium sequential random Mechanism.
Toxicol Rep. 2016 Jul 1;3:598-607. doi: 10.1016/j.toxrep.2016.06.006. eCollection 2016.
2
A rapid equilibrium random sequential bi-bi mechanism for human placental glutathione S-transferase.
Biochim Biophys Acta. 1989 Sep 14;998(1):7-13. doi: 10.1016/0167-4838(89)90111-8.
3
Steady-state kinetics and chemical mechanism of octopus hepatopancreatic glutathione transferase.
Biochem J. 1995 Jul 1;309 ( Pt 1)(Pt 1):347-53. doi: 10.1042/bj3090347.
4
Kinetic mechanism of octopus hepatopancreatic glutathione transferase in reverse micelles.
Biochem J. 1996 Apr 15;315 ( Pt 2)(Pt 2):599-606. doi: 10.1042/bj3150599.
6
Purification and kinetic mechanism of the glutathione S-transferase from C6/36, an Aedes albopictus cell line.
Arch Biochem Biophys. 1994 Apr;310(1):134-43. doi: 10.1006/abbi.1994.1149.
7
Catalytic studies of glutathione transferase from Clarias gariepinus (Burchell) in dilute and crowded solutions.
Comp Biochem Physiol C Toxicol Pharmacol. 2020 Feb;228:108648. doi: 10.1016/j.cbpc.2019.108648. Epub 2019 Oct 28.
8
Interactions of glutathione S-transferase-pi with ethacrynic acid and its glutathione conjugate.
Biochim Biophys Acta. 1993 Jul 10;1164(2):173-8. doi: 10.1016/0167-4838(93)90245-m.
9
Kinetic characterization of the endogenous glutathione transferase activity of octopus lens S-crystallin.
J Biochem. 1996 Jun;119(6):1182-8. doi: 10.1093/oxfordjournals.jbchem.a021366.

引用本文的文献

本文引用的文献

1
The glutathione S-transferases of fish.
Fish Physiol Biochem. 1987 Jun;3(4):163-72. doi: 10.1007/BF02180277.
2
The glutathione-dependent system of antioxidant defense is not modulated by temperature acclimation in muscle tissues from striped bass, Morone saxatilis.
Comp Biochem Physiol A Mol Integr Physiol. 2013 Feb;164(2):383-90. doi: 10.1016/j.cbpa.2012.11.018. Epub 2012 Nov 29.
3
Structural and catalytic role of two conserved tyrosines in Delta-class glutathione S-transferase from Locusta migratoria.
Arch Insect Biochem Physiol. 2012 Jul;80(2):77-91. doi: 10.1002/arch.21025. Epub 2012 May 11.
4
Measurement of intrinsic rate constants in the tyrosine hydroxylase reaction.
Biochemistry. 2010 Jan 26;49(3):645-52. doi: 10.1021/bi901874e.
5
Marine glutathione S-transferases.
Mar Biotechnol (NY). 2007 Sep-Oct;9(5):513-42. doi: 10.1007/s10126-007-9034-0. Epub 2007 Aug 9.
8
Glutathione transferases in the genomics era: new insights and perspectives.
Biomol Eng. 2006 Sep;23(4):149-69. doi: 10.1016/j.bioeng.2006.05.020. Epub 2006 Jun 10.
9
Nomenclature for mammalian soluble glutathione transferases.
Methods Enzymol. 2005;401:1-8. doi: 10.1016/S0076-6879(05)01001-3.
10
Glutathione transferases.
Annu Rev Pharmacol Toxicol. 2005;45:51-88. doi: 10.1146/annurev.pharmtox.45.120403.095857.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验