Suppr超能文献

功能性电刺激和基于机器人的远程康复的双边控制

Bilateral Control of Functional Electrical Stimulation and Robotics-based Telerehabilitation.

作者信息

Alibeji Naji, Dicianno Brad E, Sharma Nitin

机构信息

Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA,USA 15261.

Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA,USA 15261.

出版信息

Int J Intell Robot Appl. 2017 Feb;1(1):6-18. doi: 10.1007/s41315-016-0003-5. Epub 2017 Jan 4.

Abstract

Currently a telerehabilitation system includes a therapist and a patient where the therapist interacts with the patient, typically via a verbal and visual communication, for assessment and supervision of rehabilitation interventions. This mechanism often fails to provide physical assistance, which is a modus operandi during physical therapy or occupational therapy. Incorporating an actuation modality such as functional electrical stimulation (FES) or a robot at the patient's end that can be controlled by a therapist remotely, to provide therapy or to assess and measure rehabilitation outcomes can significantly transform current telerehabilitation technology. In this paper, a position-synchronization controller is derived for FES-based telerehabilitation to provide physical assistance that can be controlled remotely. The newly derived controller synchronizes an FES-driven human limb with a remote physical therapist's robotic manipulator despite constant bilateral communication delays. The control design overcomes a major stability analysis challenge: the unknown and unstructured nonlinearities in the FES-driven musculoskeletal dynamics. To address this challenge, the nonlinear muscle model was estimated through two neural networks functions that approximated unstructured nonlinearities and an adaptive control law for structured nonlinearities with online update laws. A Lyapunov-based stability analysis was used to prove the globally uniformly ultimately bounded tracking performance. The performance of the state synchronization controller was validated through experiments on an able-bodied subject. Specifically, we demonstrated bilateral control of FES-elicited leg extension and a human operated robotic manipulator. The controller was shown to effectively synchronize the system despite unknown and different delays in the forward and backward channels.

摘要

当前,远程康复系统包括治疗师和患者,治疗师通常通过言语和视觉交流与患者互动,以评估和监督康复干预措施。这种机制往往无法提供物理辅助,而物理辅助是物理治疗或职业治疗中的一种操作方式。在患者端加入一种可由治疗师远程控制的驱动方式,如功能性电刺激(FES)或机器人,以提供治疗或评估和测量康复效果,可显著改变当前的远程康复技术。在本文中,为基于FES的远程康复推导了一种位置同步控制器,以提供可远程控制的物理辅助。新推导的控制器能使由FES驱动的人体肢体与远程物理治疗师的机器人操纵器同步,尽管存在持续的双边通信延迟。该控制设计克服了一个主要的稳定性分析挑战:FES驱动的肌肉骨骼动力学中未知且无结构的非线性。为应对这一挑战,通过两个神经网络函数估计非线性肌肉模型,这两个函数分别近似无结构的非线性和具有在线更新律的结构化非线性的自适应控制律。基于李雅普诺夫的稳定性分析被用于证明全局一致最终有界的跟踪性能。通过对一名身体健全的受试者进行实验,验证了状态同步控制器的性能。具体而言,我们展示了对FES诱发的腿部伸展和人工操作的机器人操纵器的双边控制。结果表明,尽管前向和后向通道存在未知且不同的延迟,该控制器仍能有效地使系统同步。

相似文献

1
Bilateral Control of Functional Electrical Stimulation and Robotics-based Telerehabilitation.
Int J Intell Robot Appl. 2017 Feb;1(1):6-18. doi: 10.1007/s41315-016-0003-5. Epub 2017 Jan 4.
2
Event-Sampled Output Feedback Control of Robot Manipulators Using Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2019 Jun;30(6):1651-1658. doi: 10.1109/TNNLS.2018.2870661. Epub 2018 Oct 12.
3
Adaptive Neural Network Tracking Control for Robotic Manipulators With Dead Zone.
IEEE Trans Neural Netw Learn Syst. 2019 Dec;30(12):3611-3620. doi: 10.1109/TNNLS.2018.2869375. Epub 2018 Oct 19.
4
Position and torque control via rehabilitation robot and functional electrical stimulation.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:38-43. doi: 10.1109/ICORR.2017.8009218.
5
Feedback Error Learning Controller for Functional Electrical Stimulation Assistance in a Hybrid Robotic System for Reaching Rehabilitation.
Eur J Transl Myol. 2016 Jul 15;26(3):6164. doi: 10.4081/ejtm.2016.6164. eCollection 2016 Jun 13.
6
A Modified Dynamic Surface Controller for Delayed Neuromuscular Electrical Stimulation.
IEEE ASME Trans Mechatron. 2017 Aug;22(4):1755-1764. doi: 10.1109/TMECH.2017.2704915. Epub 2017 May 16.
7
Adaptive Cooperative Control for Hybrid FES-Robotic Upper Limb Devices: a Simulation Study.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:6398-6401. doi: 10.1109/EMBC46164.2021.9630331.
8
An Iterative Learning Controller for a Switched Cooperative Allocation Strategy during Sit-to-Stand Tasks with a Hybrid Exoskeleton.
IEEE Trans Control Syst Technol. 2022 May;30(3):1021-1036. doi: 10.1109/tcst.2021.3089885. Epub 2021 Jul 5.
9
Robotic learning from demonstration of therapist's time-varying assistance to a patient in trajectory-following tasks.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:888-894. doi: 10.1109/ICORR.2017.8009361.
10
Controlling the Cadence and Admittance of a Functional Electrical Stimulation Cycle.
IEEE Trans Neural Syst Rehabil Eng. 2019 Jun;27(6):1181-1192. doi: 10.1109/TNSRE.2019.2914579. Epub 2019 May 3.

引用本文的文献

1
An Iterative Learning Controller for a Switched Cooperative Allocation Strategy during Sit-to-Stand Tasks with a Hybrid Exoskeleton.
IEEE Trans Control Syst Technol. 2022 May;30(3):1021-1036. doi: 10.1109/tcst.2021.3089885. Epub 2021 Jul 5.
2
Closed-Loop Torque and Kinematic Control of a Hybrid Lower-Limb Exoskeleton for Treadmill Walking.
Front Robot AI. 2022 Jan 20;8:702860. doi: 10.3389/frobt.2021.702860. eCollection 2021.

本文引用的文献

1
Identification-Based Closed-Loop NMES Limb Tracking With Amplitude-Modulated Control Input.
IEEE Trans Cybern. 2016 Jul;46(7):1679-90. doi: 10.1109/TCYB.2015.2453402. Epub 2015 Jul 28.
2
Further Results on Predictor-Based Control of Neuromuscular Electrical Stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2015 Nov;23(6):1095-105. doi: 10.1109/TNSRE.2015.2418735. Epub 2015 Apr 2.
3
Heart disease and stroke statistics--2014 update: a report from the American Heart Association.
Circulation. 2014 Jan 21;129(3):e28-e292. doi: 10.1161/01.cir.0000441139.02102.80. Epub 2013 Dec 18.
5
Predictor-based compensation for electromechanical delay during neuromuscular electrical stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):601-11. doi: 10.1109/TNSRE.2011.2166405. Epub 2011 Oct 3.
6
Clinical telerehabilitation: applications for physiatrists.
PM R. 2011 Jul;3(7):647-56; quiz 656. doi: 10.1016/j.pmrj.2011.02.024.
7
In-home tele-rehabilitation improves tetraplegic hand function.
Neurorehabil Neural Repair. 2011 Jun;25(5):412-22. doi: 10.1177/1545968310394869. Epub 2011 Mar 3.
8
Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities.
IEEE Trans Neural Netw. 2010 May;21(5):796-812. doi: 10.1109/TNN.2010.2042611. Epub 2010 Mar 15.
9
10
Nonlinear neuromuscular electrical stimulation tracking control of a human limb.
IEEE Trans Neural Syst Rehabil Eng. 2009 Dec;17(6):576-84. doi: 10.1109/TNSRE.2009.2023294. Epub 2009 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验