Chen Mou, Ge Shuzhi Sam, How Bernard Voon Ee
Department of Electrical and Computer Engineering, National University of Singapore, Singapore.
IEEE Trans Neural Netw. 2010 May;21(5):796-812. doi: 10.1109/TNN.2010.2042611. Epub 2010 Mar 15.
In this paper, robust adaptive neural network (NN) control is investigated for a general class of uncertain multiple-input-multiple-output (MIMO) nonlinear systems with unknown control coefficient matrices and input nonlinearities. For nonsymmetric input nonlinearities of saturation and deadzone, variable structure control (VSC) in combination with backstepping and Lyapunov synthesis is proposed for adaptive NN control design with guaranteed stability. In the proposed adaptive NN control, the usual assumption on nonsingularity of NN approximation for unknown control coefficient matrices and boundary assumption between NN approximation error and control input have been eliminated. Command filters are presented to implement physical constraints on the virtual control laws, then the tedious analytic computations of time derivatives of virtual control laws are canceled. It is proved that the proposed robust backstepping control is able to guarantee semiglobal uniform ultimate boundedness of all signals in the closed-loop system. Finally, simulation results are presented to illustrate the effectiveness of the proposed adaptive NN control.
本文针对一类具有未知控制系数矩阵和输入非线性的不确定多输入多输出(MIMO)非线性系统,研究了鲁棒自适应神经网络(NN)控制。针对饱和与死区等非对称输入非线性,提出了结合变结构控制(VSC)、反步法和李雅普诺夫综合法的自适应NN控制设计,以保证稳定性。在所提出的自适应NN控制中,消除了关于未知控制系数矩阵的NN逼近非奇异性的通常假设以及NN逼近误差与控制输入之间的边界假设。引入指令滤波器以对虚拟控制律施加物理约束,进而消除了虚拟控制律时间导数的繁琐解析计算。证明了所提出的鲁棒反步控制能够保证闭环系统中所有信号的半全局一致最终有界性。最后,给出了仿真结果以说明所提出的自适应NN控制的有效性。