Allemand Rémi, Boistel Renaud, Daghfous Gheylen, Blanchet Zoé, Cornette Raphaël, Bardet Nathalie, Vincent Peggy, Houssaye Alexandra
Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, CR2P - UMR 7207 - CNRS, MNHN, UPMC, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France.
Département Adaptations du Vivant, UMR 7179 - CNRS/Muséum National d'Histoire Naturelle, Paris, France.
J Anat. 2017 Dec;231(6):849-868. doi: 10.1111/joa.12692. Epub 2017 Sep 28.
Brain endocasts obtained from computed tomography (CT) are now widely used in the field of comparative neuroanatomy. They provide an overview of the morphology of the brain and associated tissues located in the cranial cavity. Through anatomical comparisons between species, insights on the senses, the behavior, and the lifestyle can be gained. Although there are many studies dealing with mammal and bird endocasts, those performed on the brain endocasts of squamates are comparatively rare, thus limiting our understanding of their morphological variability and interpretations. Here, we provide the first comparative study of snake brain endocasts in order to bring new information about the morphology of these structures. Additionally, we test if the snake brain endocast encompasses a phylogenetic and/or an ecological signal. For this purpose, the digital endocasts of 45 snake specimens, including a wide diversity in terms of phylogeny and ecology, were digitized using CT, and compared both qualitatively and quantitatively. Snake endocasts exhibit a great variability. The different methods performed from descriptive characters, linear measurements and the outline curves provided complementary information. All these methods have shown that the shape of the snake brain endocast contains, as in mammals and birds, a phylogenetic signal but also an ecological one. Although phylogenetically related taxa share several similarities between each other, the brain endocast morphology reflects some notable ecological trends: e.g. (i) fossorial species possess both reduced optic tectum and pituitary gland; (ii) both fossorial and marine species have cerebral hemispheres poorly developed laterally; (iii) cerebral hemispheres and optic tectum are more developed in arboreal and terrestrial species.
通过计算机断层扫描(CT)获得的脑内腔模型目前在比较神经解剖学领域中得到广泛应用。它们提供了位于颅腔内的大脑及相关组织形态的概述。通过物种间的解剖学比较,可以深入了解其感官、行为和生活方式。尽管有许多关于哺乳动物和鸟类脑内腔模型的研究,但对有鳞目动物脑内腔模型的研究相对较少,这限制了我们对其形态变异性的理解和解读。在此,我们首次对蛇脑内腔模型进行比较研究,以获取有关这些结构形态的新信息。此外,我们还测试蛇脑内腔模型是否包含系统发育和/或生态信号。为此,我们使用CT对45个蛇标本的数字脑内腔模型进行了数字化处理,这些标本在系统发育和生态方面具有广泛的多样性,并进行了定性和定量比较。蛇脑内腔模型表现出很大的变异性。从描述性特征、线性测量和轮廓曲线等不同方法提供了互补信息。所有这些方法都表明,与哺乳动物和鸟类一样,蛇脑内腔模型的形状既包含系统发育信号,也包含生态信号。尽管系统发育相关的类群之间存在一些相似之处,但脑内腔模型的形态反映了一些显著的生态趋势:例如,(i)穴居物种的视叶和垂体都较小;(ii)穴居和海洋物种的大脑半球外侧发育都较差;(iii)树栖和陆地物种的大脑半球和视叶更为发达。