Suppr超能文献

不受固定化学计量比限制的化合物塞贝克系数预测:一种机器学习方法。

Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: A machine learning approach.

作者信息

Furmanchuk Al'ona, Saal James E, Doak Jeff W, Olson Gregory B, Choudhary Alok, Agrawal Ankit

机构信息

Institute for Public Health and Medicine, Feinberg School of Medicine, Center for Health Information Partnerships, Northwestern University, Chicago, Illinois 60611.

QuesTeck Innovations LLC, Evanston, Illinois 60201.

出版信息

J Comput Chem. 2018 Feb 5;39(4):191-202. doi: 10.1002/jcc.25067. Epub 2017 Sep 27.

Abstract

The regression model-based tool is developed for predicting the Seebeck coefficient of crystalline materials in the temperature range from 300 K to 1000 K. The tool accounts for the single crystal versus polycrystalline nature of the compound, the production method, and properties of the constituent elements in the chemical formula. We introduce new descriptive features of crystalline materials relevant for the prediction the Seebeck coefficient. To address off-stoichiometry in materials, the predictive tool is trained on a mix of stoichiometric and nonstoichiometric materials. The tool is implemented into a web application (http://info.eecs.northwestern.edu/SeebeckCoefficientPredictor) to assist field scientists in the discovery of novel thermoelectric materials. © 2017 Wiley Periodicals, Inc.

摘要

基于回归模型的工具被开发用于预测晶体材料在300 K至1000 K温度范围内的塞贝克系数。该工具考虑了化合物的单晶与多晶性质、生产方法以及化学式中组成元素的性质。我们引入了与预测塞贝克系数相关的晶体材料新描述特征。为解决材料中的非化学计量问题,该预测工具在化学计量和非化学计量材料的混合样本上进行训练。该工具被集成到一个网络应用程序(http://info.eecs.northwestern.edu/SeebeckCoefficientPredictor)中,以协助领域科学家发现新型热电材料。© 2017威利期刊公司

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验