Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University , Beijing 100875, P. R. China.
Acc Chem Res. 2018 Feb 20;51(2):240-247. doi: 10.1021/acs.accounts.7b00480. Epub 2018 Jan 9.
Materials that can directly convert electricity into heat, i.e., thermoelectric materials, have attracted renewed attention globally for sustainable energy applications. As one of the state-of-the-art thermoelectric materials, InSe features an interesting crystal structure of quasi-two-dimensional sheets comprising In/Se chains that provide a platform to achieve a Peierls distortion and support a charge density wave instability. Single-crystal InSe (δ = 0.65) shows strong anisotropy in its thermoelectric properties with a very high ZT of 1.48 at 705 K in the b-c plane (one of the highest values for an n-type thermoelectric material to date) but a much lower ZT of approximately 0.5 in the a-b plane. Because of the random dispersion of grains and the grain boundary effect, the electrical transport properties of polycrystalline InSe are poor, which is the main impediment to improve their performance. The In4-site in the InSe unit cell is substitutional for dopants such as Pb, which increases the carrier concentration by 2 orders of magnitude and the electrical conductivity to 143 S/cm. Furthermore, the electrical conductivity markedly increases to approximately 160 S/cm when Cu is doped into the interstitial site but remains as low as 30 S/cm with In1/In2/In3-site dopants, e.g., Ni, Zn, Ga, and Sn. In particular, the In4-site dopant ytterbium introduces a pinning level that highly localizes the charge carriers; thus, the electrical conductivity is maintained within an order of magnitude of 30 S/cm. Meanwhile, ytterbium also creates resonance states around the Fermi level that increase the Seebeck coefficient to -350 μV/K, the highest value at the ZT peak. However, the maximum solubility of the dopant may be limited by the Se-vacancy concentration. In addition, a Se vacancy also destroys the regular lattice vibrations and weakens phonon transport. Finally, nanoinclusions can effectively scatter the middle wavelength phonons, resulting in a decrease in the lattice thermal conductivity. Because of the multiple-dopant strategy, polycrystalline materials are competitive with single crystals regarding ZT values; for instance, Pb/Sn-co-doped InPbSnSe has ZT = 1.4 at 733 K, whereas InSe(CuI) has ZT = 1.34 at 723 K. These properties illustrate the promise of polycrystalline InSe-based materials for various applications. Finally, the ZT values of all single crystalline and polycrystalline InSe materials have been summarized as a function of the doping strategy applied at the different lattice sites. Additionally, the correlations between the electrical conductivity and the Seebeck coefficient of all the polycrystalline materials are presented. These insights may provide new ideas in the search for and selection of new thermoelectric compounds in the In/Se and related In/Te, Sn/Se, and Sn/Te systems.
能够直接将电能转化为热能的材料,即热电材料,因其在可持续能源应用方面的潜力,再次引起了全球的关注。作为最先进的热电材料之一,InSe 具有有趣的准二维片层晶体结构,由 In/Se 链组成,为实现派尔斯畸变和支持电荷密度波不稳定性提供了平台。单晶 InSe(δ=0.65)在 b-c 平面(迄今为止 n 型热电材料中最高的 ZT 值之一)的热输运性质具有很强的各向异性,ZT 值高达 1.48,但在 a-b 平面的 ZT 值要低得多,约为 0.5。由于晶粒的随机分散和晶界效应,多晶 InSe 的电输运性质较差,这是提高其性能的主要障碍。InSe 单元晶胞中的 In4 位可以被 Pb 等掺杂剂取代,这将载流子浓度提高了 2 个数量级,电导率提高到 143 S/cm。此外,当 Cu 掺杂到间隙位时,电导率显著提高到约 160 S/cm,但当掺杂到 In1/In2/In3 位时,如 Ni、Zn、Ga 和 Sn 时,电导率仍低至 30 S/cm。特别是,In4 位掺杂剂镱会引入一个使载流子高度局域化的钉扎能级,因此电导率保持在 30 S/cm 的数量级内。同时,镱也在费米能级周围形成共振态,使 Seebeck 系数增加到-350 μV/K,这是 ZT 峰值处的最高值。然而,掺杂剂的最大溶解度可能受到 Se 空位浓度的限制。此外,Se 空位也破坏了规则的晶格振动,削弱了声子输运。最后,纳米夹杂物可以有效地散射中间波长的声子,从而降低晶格热导率。由于采用了多掺杂策略,多晶材料在 ZT 值方面与单晶材料具有竞争力;例如,Pb/Sn 共掺杂的 InPbSnSe 在 733 K 时的 ZT 值为 1.4,而 InSe(CuI) 在 723 K 时的 ZT 值为 1.34。这些性能说明了多晶 InSe 基材料在各种应用中的前景。最后,总结了所有单晶和多晶 InSe 材料的 ZT 值作为在不同晶格位应用的掺杂策略的函数。此外,还给出了所有多晶材料的电导率与 Seebeck 系数之间的关系。这些研究结果为在 In/Se 和相关的 In/Te、Sn/Se 和 Sn/Te 系统中寻找和选择新型热电化合物提供了新的思路。