Suppr超能文献

项目总和技术中的多重敏感估计与最优样本量分配

Multiple sensitive estimation and optimal sample size allocation in the item sum technique.

作者信息

Perri Pier Francesco, Rueda García María Del Mar, Cobo Rodríguez Beatriz

机构信息

Department of Economics, Statistics and Finance, University of Calabria. Via P. Bucci, 87036, Arcavacata di Rende, Italy.

Department of Statistics and Operational Research, University of Granada. Campus Universitario Fuentenueva, 18071, Granada, Spain.

出版信息

Biom J. 2018 Jan;60(1):155-173. doi: 10.1002/bimj.201700021. Epub 2017 Sep 27.

Abstract

For surveys of sensitive issues in life sciences, statistical procedures can be used to reduce nonresponse and social desirability response bias. Both of these phenomena provoke nonsampling errors that are difficult to deal with and can seriously flaw the validity of the analyses. The item sum technique (IST) is a very recent indirect questioning method derived from the item count technique that seeks to procure more reliable responses on quantitative items than direct questioning while preserving respondents' anonymity. This article addresses two important questions concerning the IST: (i) its implementation when two or more sensitive variables are investigated and efficient estimates of their unknown population means are required; (ii) the determination of the optimal sample size to achieve minimum variance estimates. These aspects are of great relevance for survey practitioners engaged in sensitive research and, to the best of our knowledge, were not studied so far. In this article, theoretical results for multiple estimation and optimal allocation are obtained under a generic sampling design and then particularized to simple random sampling and stratified sampling designs. Theoretical considerations are integrated with a number of simulation studies based on data from two real surveys and conducted to ascertain the efficiency gain derived from optimal allocation in different situations. One of the surveys concerns cannabis consumption among university students. Our findings highlight some methodological advances that can be obtained in life sciences IST surveys when optimal allocation is achieved.

摘要

对于生命科学中敏感问题的调查,可以使用统计程序来减少无回答和社会期望性回答偏差。这两种现象都会引发难以处理的非抽样误差,并可能严重损害分析的有效性。项目总和技术(IST)是一种最近从项目计数技术衍生而来的间接提问方法,旨在在保持受访者匿名的情况下,比直接提问获得关于定量项目更可靠的回答。本文讨论了与IST相关的两个重要问题:(i)在调查两个或更多敏感变量并需要对其未知总体均值进行有效估计时的实施方法;(ii)确定实现最小方差估计的最优样本量。这些方面对于从事敏感研究的调查从业者非常重要,据我们所知,到目前为止尚未进行过研究。在本文中,在一般抽样设计下获得了多重估计和最优分配的理论结果,然后针对简单随机抽样和分层抽样设计进行了具体化。理论考量与基于两项实际调查数据的多项模拟研究相结合,以确定在不同情况下最优分配所带来的效率提升。其中一项调查涉及大学生中的大麻消费情况。我们的研究结果突出了在生命科学IST调查中实现最优分配时可以取得的一些方法学进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验