文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过鉴定异质生物标志物改善乳腺癌预后预测。

Improved prediction of breast cancer outcome by identifying heterogeneous biomarkers.

机构信息

Department of Computer Science and Engineering, Incheon National University, Incheon, The Republic of Korea.

Department of Computer Science, Yonsei University, Seoul, The Republic of Korea.

出版信息

Bioinformatics. 2017 Nov 15;33(22):3619-3626. doi: 10.1093/bioinformatics/btx487.


DOI:10.1093/bioinformatics/btx487
PMID:28961949
Abstract

MOTIVATION: Identification of genes that can be used to predict prognosis in patients with cancer is important in that it can lead to improved therapy, and can also promote our understanding of tumor progression on the molecular level. One of the common but fundamental problems that render identification of prognostic genes and prediction of cancer outcomes difficult is the heterogeneity of patient samples. RESULTS: To reduce the effect of sample heterogeneity, we clustered data samples using K-means algorithm and applied modified PageRank to functional interaction (FI) networks weighted using gene expression values of samples in each cluster. Hub genes among resulting prioritized genes were selected as biomarkers to predict the prognosis of samples. This process outperformed traditional feature selection methods as well as several network-based prognostic gene selection methods when applied to Random Forest. We were able to find many cluster-specific prognostic genes for each dataset. Functional study showed that distinct biological processes were enriched in each cluster, which seems to reflect different aspect of tumor progression or oncogenesis among distinct patient groups. Taken together, these results provide support for the hypothesis that our approach can effectively identify heterogeneous prognostic genes, and these are complementary to each other, improving prediction accuracy. AVAILABILITY AND IMPLEMENTATION: https://github.com/mathcom/CPR. CONTACT: jgahn@inu.ac.kr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:识别可用于预测癌症患者预后的基因非常重要,因为它可以导致治疗效果的改善,也可以促进我们对肿瘤在分子水平上进展的理解。使预后基因的识别和癌症结果的预测变得困难的一个常见但基本的问题是患者样本的异质性。

结果:为了减少样本异质性的影响,我们使用 K-均值算法对数据样本进行聚类,并应用改进的 PageRank 对使用每个聚类中样本的基因表达值加权的功能相互作用(FI)网络进行处理。从优先基因中选择的枢纽基因作为生物标志物来预测样本的预后。当应用于随机森林时,该过程优于传统的特征选择方法以及几种基于网络的预后基因选择方法。我们能够为每个数据集找到许多特定于聚类的预后基因。功能研究表明,每个聚类中都富集了不同的生物学过程,这似乎反映了不同患者群体中肿瘤进展或致癌作用的不同方面。总之,这些结果支持了我们的方法可以有效地识别异质预后基因的假设,并且它们相互补充,提高了预测准确性。

可用性和实现:https://github.com/mathcom/CPR.

联系方式:jgahn@inu.ac.kr.

补充信息:补充数据可在生物信息学在线获得。

相似文献

[1]
Improved prediction of breast cancer outcome by identifying heterogeneous biomarkers.

Bioinformatics. 2017-11-15

[2]
Identification of potential prognostic biomarkers for breast cancer using WGCNA and PPI integrated techniques.

Ann Diagn Pathol. 2021-2

[3]
FUNMarker: Fusion Network-Based Method to Identify Prognostic and Heterogeneous Breast Cancer Biomarkers.

IEEE/ACM Trans Comput Biol Bioinform. 2021

[4]
Identifying cancer biomarkers by network-constrained support vector machines.

BMC Syst Biol. 2011-10-12

[5]
Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.

Bioinformatics. 2015-8-15

[6]
Tumor origin detection with tissue-specific miRNA and DNA methylation markers.

Bioinformatics. 2018-2-1

[7]
Identification of breast cancer prognostic modules via differential module selection based on weighted gene Co-expression network analysis.

Biosystems. 2021-1

[8]
Estrogen receptor 1 and progesterone receptor are distinct biomarkers and prognostic factors in estrogen receptor-positive breast cancer: Evidence from a bioinformatic analysis.

Biomed Pharmacother. 2019-11-13

[9]
Feature selection with the Fisher score followed by the Maximal Clique Centrality algorithm can accurately identify the hub genes of hepatocellular carcinoma.

Sci Rep. 2019-11-21

[10]
Network-based inference framework for identifying cancer genes from gene expression data.

Biomed Res Int. 2013-9-1

引用本文的文献

[1]
Deep Learning Mechanism for Predicting the Axillary Lymph Node Metastasis in Patients with Primary Breast Cancer.

Biomed Res Int. 2022

[2]
GVES: machine learning model for identification of prognostic genes with a small dataset.

Sci Rep. 2021-1-11

[3]
Evaluation of Pathway Activation for a Single Sample Toward Inflammatory Bowel Disease Classification.

Front Genet. 2020-2-5

[4]
Tumor heterogeneity and acquired drug resistance in FGFR2-fusion-positive cholangiocarcinoma through rapid research autopsy.

Cold Spring Harb Mol Case Stud. 2019-8-1

[5]
Object Weighting: A New Clustering Approach to Deal with Outliers and Cluster Overlap in Computational Biology.

IEEE/ACM Trans Comput Biol Bioinform. 2021

[6]
Machine Learning and Integrative Analysis of Biomedical Big Data.

Genes (Basel). 2019-1-28

[7]
Phosphoinositide 3-kinase-delta could be a biomarker for eosinophilic nasal polyps.

Sci Rep. 2018-10-30

[8]
An Improved Method for Prediction of Cancer Prognosis by Network Learning.

Genes (Basel). 2018-10-2

[9]
G2Vec: Distributed gene representations for identification of cancer prognostic genes.

Sci Rep. 2018-9-13

[10]
Methylation Profiles of BRCA1, RASSF1A and GSTP1 in Vietnamese Women with Breast Cancer.

Asian Pac J Cancer Prev. 2018-7-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索