Suppr超能文献

鉴定与结核分枝杆菌环丝氨酸耐药相关的新型突变。

Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis.

机构信息

Key Lab of Molecular Virology, Institute of Medical Microbiology, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.

Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.

出版信息

J Antimicrob Chemother. 2017 Dec 1;72(12):3272-3276. doi: 10.1093/jac/dkx316.

Abstract

OBJECTIVES

d-Cycloserine is an important second-line drug used to treat MDR- and XDR-TB. However, the mechanisms of resistance to d-cycloserine are not well understood. Here we investigated the molecular basis of d-cycloserine resistance using in vitro-isolated resistant mutants.

METHODS

Mycobacterium tuberculosis H37Rv was subjected to mutant selection on 7H11 agar plates containing varying concentrations of d-cycloserine. A total of 18 d-cycloserine-resistant mutants were isolated and subjected to WGS. The identified mutations associated with d-cycloserine resistance were confirmed by PCR and Sanger sequencing.

RESULTS

We identified mutations in 16 genes that are associated with d-cycloserine resistance. Interestingly, we found mutations only in alr (rv3423c) encoding alanine racemase, but not in other known d-cycloserine resistance-associated genes such as ddl, cycA or ald. Instead, we identified 13 new genes [rv0059, betP (rv0917), rv0221, rv1403c, rv1683, rv1726, gabD2 (rv1731), rv2749, sugI (rv3331), hisC2 (rv3772), the 5' intergenic region of rv3345c and rv1435c, and the 3' region of rv0759c] that had solo mutations associated with d-cycloserine resistance. Our findings indicate that the mechanisms of d-cycloserine resistance are more complex than previously thought and involve genes participating in different cellular functions such as lipid metabolism, methyltransferase, the stress response and transport systems.

CONCLUSIONS

New mutations in diverse genes associated with d-cycloserine resistance have been identified that shed new light on the mechanisms of action and resistance of d-cycloserine. Future studies are needed to verify these findings in clinical strains so that molecular detection of d-cycloserine resistance for improved treatment of MDR-TB can be developed.

摘要

目的

d-环丝氨酸是一种重要的二线药物,用于治疗 MDR 和 XDR-TB。然而,其耐药机制尚不清楚。本研究通过体外分离的耐药突变株,研究 d-环丝氨酸耐药的分子基础。

方法

结核分枝杆菌 H37Rv 经 7H11 琼脂平板中不同浓度 d-环丝氨酸选择培养后,分离出 18 株 d-环丝氨酸耐药突变株,并进行 WGS。通过 PCR 和 Sanger 测序确认与 d-环丝氨酸耐药相关的突变。

结果

在 16 个与 d-环丝氨酸耐药相关的基因中发现了突变。有趣的是,我们仅在编码丙氨酸消旋酶的 alr(rv3423c)基因中发现了突变,而不是在其他已知的 d-环丝氨酸耐药相关基因如 ddl、cycA 或 ald 中发现突变。相反,我们鉴定了 13 个新基因 [rv0059、betP(rv0917)、rv0221、rv1403c、rv1683、rv1726、gabD2(rv1731)、rv2749、sugI(rv3331)、hisC2(rv3772)、rv3345c 基因的 5' 内含子区和 rv1435c 以及 rv0759c 基因的 3' 区],它们的单独突变与 d-环丝氨酸耐药相关。研究结果表明,d-环丝氨酸耐药的机制比以前认为的更为复杂,涉及参与不同细胞功能的基因,如脂质代谢、甲基转移酶、应激反应和转运系统。

结论

本研究鉴定了与 d-环丝氨酸耐药相关的不同基因中的新突变,为 d-环丝氨酸的作用机制和耐药机制提供了新的认识。需要进一步的研究来验证这些发现是否存在于临床菌株中,以便开发用于提高 MDR-TB 治疗效果的 d-环丝氨酸耐药的分子检测方法。

相似文献

1
Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis.
J Antimicrob Chemother. 2017 Dec 1;72(12):3272-3276. doi: 10.1093/jac/dkx316.
2
Role of Alanine Racemase Mutations in Mycobacterium tuberculosis d-Cycloserine Resistance.
Antimicrob Agents Chemother. 2017 Nov 22;61(12). doi: 10.1128/AAC.01575-17. Print 2017 Dec.
4
[A preliminary study on the molecular characteristics of D-cycloserine resistance of ].
Zhonghua Liu Xing Bing Xue Za Zhi. 2017 Feb 10;38(2):240-243. doi: 10.3760/cma.j.issn.0254-6450.2017.02.021.
6
Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis.
J Bacteriol. 1997 Aug;179(16):5046-55. doi: 10.1128/jb.179.16.5046-5055.1997.
8
Characterization of linezolid-resistance-associated mutations in Mycobacterium tuberculosis through WGS.
J Antimicrob Chemother. 2019 Jul 1;74(7):1795-1798. doi: 10.1093/jac/dkz150.
10
Metabolomics analysis identifies d-Alanine-d-Alanine ligase as the primary lethal target of d-Cycloserine in mycobacteria.
J Proteome Res. 2014 Feb 7;13(2):1065-76. doi: 10.1021/pr4010579. Epub 2013 Dec 13.

引用本文的文献

1
Feature selection and aggregation for antibiotic resistance GWAS in : a comparative study.
Front Microbiol. 2025 Jun 18;16:1586476. doi: 10.3389/fmicb.2025.1586476. eCollection 2025.
2
Cycloserine resistance among drug-resistant tuberculosis cases in Taiwan.
Microbiol Spectr. 2025 Jul;13(7):e0342224. doi: 10.1128/spectrum.03422-24. Epub 2025 Jun 9.
3
High Prevalence of atpE Mutations in Bedaquiline-Resistant Mycobacterium tuberculosis Isolates, Russia.
Emerg Infect Dis. 2025 Mar;31(3):525-536. doi: 10.3201/eid3103.241488.
4
Dual transcriptional inhibition of glutamate and alanine racemase is synergistic in .
Microbiology (Reading). 2024 Aug;170(8). doi: 10.1099/mic.0.001484.
6
Breaking barriers: The potential of nanosystems in antituberculosis therapy.
Bioact Mater. 2024 May 17;39:106-134. doi: 10.1016/j.bioactmat.2024.05.013. eCollection 2024 Sep.
7
Roles of Lipolytic enzymes in pathogenesis.
Front Microbiol. 2024 Jan 29;15:1329715. doi: 10.3389/fmicb.2024.1329715. eCollection 2024.
8
Metabolic Rewiring of upon Drug Treatment and Antibiotics Resistance.
Metabolites. 2024 Jan 18;14(1):63. doi: 10.3390/metabo14010063.
9
How do Mutations of Mycobacterium Genes Cause Drug Resistance in Tuberculosis?
Curr Pharm Biotechnol. 2024;25(6):724-736. doi: 10.2174/0113892010257816230920053547.
10
Gated Calcium Ion Channel and Mutation Mechanisms in Multidrug-Resistant Tuberculosis.
Int J Mol Sci. 2023 Jun 2;24(11):9670. doi: 10.3390/ijms24119670.

本文引用的文献

2
Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015.
Int J Tuberc Lung Dis. 2015 Nov;19(11):1276-89. doi: 10.5588/ijtld.15.0389.
3
Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis.
Emerg Microbes Infect. 2013 Jun;2(6):e34. doi: 10.1038/emi.2013.38. Epub 2013 Jun 12.
4
Multiple toxin-antitoxin systems in Mycobacterium tuberculosis.
Toxins (Basel). 2014 Mar 6;6(3):1002-20. doi: 10.3390/toxins6031002.
5
Metabolomics Reveal d-Alanine:d-Alanine Ligase As the Target of d-Cycloserine in .
ACS Med Chem Lett. 2013 Dec 12;4(12):1233-1237. doi: 10.1021/ml400349n. Epub 2013 Oct 5.
6
Metabolomics analysis identifies d-Alanine-d-Alanine ligase as the primary lethal target of d-Cycloserine in mycobacteria.
J Proteome Res. 2014 Feb 7;13(2):1065-76. doi: 10.1021/pr4010579. Epub 2013 Dec 13.
7
Reinterpreting the mechanism of inhibition of Mycobacterium tuberculosis D-alanine:D-alanine ligase by D-cycloserine.
Biochemistry. 2013 Oct 8;52(40):7145-9. doi: 10.1021/bi400839f. Epub 2013 Sep 25.
8
Whole-genome sequencing for rapid susceptibility testing of M. tuberculosis.
N Engl J Med. 2013 Jul 18;369(3):290-2. doi: 10.1056/NEJMc1215305.
10
Alanine racemase mutants of Mycobacterium tuberculosis require D-alanine for growth and are defective for survival in macrophages and mice.
Microbiology (Reading). 2012 Feb;158(Pt 2):319-327. doi: 10.1099/mic.0.054064-0. Epub 2011 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验