Neurosurgical Simulation Research and Training Centre, Department of Neurosurgery, Montréal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.
Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah Almukarramah, Saudi Arabia.
Oper Neurosurg (Hagerstown). 2018 Jun 1;14(6):686-696. doi: 10.1093/ons/opx189.
The force pyramid is a novel visual representation allowing spatial delineation of instrument force application during surgical procedures. In this study, the force pyramid concept is employed to create and quantify dominant hand, nondominant hand, and bimanual force pyramids during resection of virtual reality brain tumors.
To address 4 questions: Do ergonomics and handedness influence force pyramid structure? What are the differences between dominant and nondominant force pyramids? What is the spatial distribution of forces applied in specific tumor quadrants? What differentiates "expert" and "novice" groups regarding their force pyramids?
Using a simulated aspirator in the dominant hand and a simulated sucker in the nondominant hand, 6 neurosurgeons and 14 residents resected 8 different tumors using the CAE NeuroVR virtual reality neurosurgical simulation platform (CAE Healthcare, Montréal, Québec and the National Research Council Canada, Boucherville, Québec). Position and force data were used to create force pyramids and quantify tumor quadrant force distribution.
Force distribution quantification demonstrates the critical role that handedness and ergonomics play on psychomotor performance during simulated brain tumor resections. Neurosurgeons concentrate their dominant hand forces in a defined crescent in the lower right tumor quadrant. Nondominant force pyramids showed a central peak force application in all groups. Bimanual force pyramids outlined the combined impact of each hand. Distinct force pyramid patterns were seen when tumor stiffness, border complexity, and color were altered.
Force pyramids allow delineation of specific tumor regions requiring greater psychomotor ability to resect. This information can focus and improve resident technical skills training.
力锥是一种新颖的视觉表现形式,可在手术过程中对器械力的空间分布进行划分。本研究采用力锥概念,创建并量化了虚拟现实脑肿瘤切除过程中主手、非主手和双手的力锥。
回答 4 个问题:手术操作中的人机工程学和利手习惯是否会影响力锥结构?主手和非主手力锥有何区别?施加于特定肿瘤象限的力的空间分布如何?力锥如何区分“专家”和“新手”群体?
使用主手的模拟吸引器和非主手的模拟吸盘,6 名神经外科医生和 14 名住院医师使用 CAENeuroVR 虚拟现实神经外科模拟平台(CAE Healthcare,蒙特利尔,魁北克省和加拿大国家研究委员会,Boucherville,魁北克省)切除 8 种不同的肿瘤。使用位置和力数据创建力锥并量化肿瘤象限的力分布。
力分布量化表明,在模拟脑肿瘤切除过程中,利手习惯和人机工程学对手动操作性能起着关键作用。神经外科医生将其主手的力量集中在右下肿瘤象限的一个特定的新月形区域内。所有组的非主手力锥均显示出中央峰值力的应用。双手力锥概述了每只手的综合影响。当肿瘤硬度、边界复杂性和颜色改变时,会出现明显的力锥模式。
力锥可以区分需要更高运动能力来切除的特定肿瘤区域。这些信息可以集中并改善住院医师的技术技能培训。