Suppr超能文献

在一株经ChrT基因工程改造的菌株中,铬酸盐还原酶的还原能力和酶活性降低。

Reducing capacity and enzyme activity of chromate reductase in a ChrT-engineered strain.

作者信息

Zhou Simin, Dong Lanlan, Deng Peng, Jia Yan, Bai Qunhua, Gao Jieying, Xiao Hong

机构信息

Department of Health Laboratory Technology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, P.R. China.

Yubei District Center for Disease Control and Prevention, Chongqing 401120, P.R. China.

出版信息

Exp Ther Med. 2017 Sep;14(3):2361-2366. doi: 10.3892/etm.2017.4775. Epub 2017 Jul 11.

Abstract

In order to remediate the metal-contaminated soil and water ecosystems with microorganisms, an engineered strain, which contained the chromate reductase ChrT gene from sp. S2, was studied in detail for its Cr (VI) reduction efficiency, optimal culture condition and chromate reductase activity. Results demonstrated that the engineered strain had a high Cr (VI) reduction rate of up to 40% at a concentration of 50 mg/l after being cultured for 48 h. Additionally, the optimal culture conditions were pH 7.0 and 37°C. Furthermore, the carbon sources and metal cations exhibited significant effects on the Cr (VI) reduction rate of the engineered bacterium. Sodium lactate, sodium acetate, Cu, Co and Pb were positively correlated with the reduction rate. Chromate reductase was soluble and presented in the cytoplasm. Furthermore, the enzymatic activity with nicotinamide adenine dinucleotide phosphate, which was as an electron donor, reached 14.83 U/mg.

摘要

为了利用微生物修复金属污染的土壤和水生态系统,对一种含有来自sp. S2的铬酸盐还原酶ChrT基因的工程菌株进行了详细研究,考察其对Cr(VI)的还原效率、最佳培养条件和铬酸盐还原酶活性。结果表明,该工程菌株在50 mg/l浓度下培养48 h后,Cr(VI)还原率高达40%。此外,最佳培养条件为pH 7.0和37°C。此外,碳源和金属阳离子对该工程菌的Cr(VI)还原率有显著影响。乳酸钠、醋酸钠、铜、钴和铅与还原率呈正相关。铬酸盐还原酶是可溶的,存在于细胞质中。此外,以烟酰胺腺嘌呤二核苷酸磷酸作为电子供体时,酶活性达到14.83 U/mg。

相似文献

1
Reducing capacity and enzyme activity of chromate reductase in a ChrT-engineered strain.
Exp Ther Med. 2017 Sep;14(3):2361-2366. doi: 10.3892/etm.2017.4775. Epub 2017 Jul 11.
2
Chromium metabolism characteristics of coexpression of ChrA and ChrT gene.
Ecotoxicol Environ Saf. 2020 Nov;204:111060. doi: 10.1016/j.ecoenv.2020.111060. Epub 2020 Aug 5.
3
Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site.
Appl Microbiol Biotechnol. 2011 May;90(3):1163-9. doi: 10.1007/s00253-011-3120-y. Epub 2011 Feb 12.
4
Partial purification and characterization of chromate reductase of a novel Ochrobactrum sp. strain Cr-B4.
Prep Biochem Biotechnol. 2015;45(8):769-84. doi: 10.1080/10826068.2014.952385.
5
Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from sp.
Exp Ther Med. 2015 Mar;9(3):795-800. doi: 10.3892/etm.2014.2148. Epub 2014 Dec 18.
7
In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions.
Appl Biochem Biotechnol. 2012 Feb;166(4):933-41. doi: 10.1007/s12010-011-9481-y. Epub 2011 Dec 13.
9
[Characterization of chromate resistance in genetically engineered Escherichia coli expressing chromate ion transporter ChrA].
Nan Fang Yi Ke Da Xue Xue Bao. 2017 Oct 20;37(10):1290-1295. doi: 10.3969/j.issn.1673-4254.2017.10.02.
10
Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review.
J Environ Manage. 2014 Dec 15;146:383-399. doi: 10.1016/j.jenvman.2014.07.014. Epub 2014 Sep 8.

引用本文的文献

2
Characterization of multi-metal-resistant Serratia sp. GP01 for treatment of effluent from fertilizer industries.
Arch Microbiol. 2021 Nov;203(9):5425-5435. doi: 10.1007/s00203-021-02523-z. Epub 2021 Aug 17.
3
Identification of a TeO32- reductase/mycothione reductase from Rhodococcus erythropolis PR4.
FEMS Microbiol Ecol. 2020 Dec 29;97(1). doi: 10.1093/femsec/fiaa220.
4
Metalloid Reductase Activity Modified by a Fused Se Binding Peptide.
ACS Chem Biol. 2020 Jul 17;15(7):1987-1995. doi: 10.1021/acschembio.0c00387. Epub 2020 Jul 6.

本文引用的文献

1
2
Interaction of Cr(VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2 under aerobic conditions.
Bioresour Technol. 2015 Jun;185:346-52. doi: 10.1016/j.biortech.2015.02.109. Epub 2015 Mar 6.
3
Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from sp.
Exp Ther Med. 2015 Mar;9(3):795-800. doi: 10.3892/etm.2014.2148. Epub 2014 Dec 18.
4
Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review.
J Environ Manage. 2014 Dec 15;146:383-399. doi: 10.1016/j.jenvman.2014.07.014. Epub 2014 Sep 8.
6
Microbial reduction of chromate in the presence of nitrate by three nitrate respiring organisms.
Front Microbiol. 2012 Dec 17;3:416. doi: 10.3389/fmicb.2012.00416. eCollection 2012.
7
Removal of hexavalent chromium in tannery wastewater by Bacillus cereus.
Can J Microbiol. 2012 Jan;58(1):23-8. doi: 10.1139/w11-096. Epub 2011 Dec 13.
8
Hexavalent chromium reduction by free and immobilized cell-free extract of Arthrobacter rhombi-RE.
Appl Biochem Biotechnol. 2010 Jan;160(1):81-97. doi: 10.1007/s12010-008-8515-6. Epub 2009 Jan 23.
10
Mechanisms of bacterial resistance to chromium compounds.
Biometals. 2008 Jun;21(3):321-32. doi: 10.1007/s10534-007-9121-8. Epub 2007 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验