Suppr超能文献

基于转录组的蛋白质网络鉴定结直肠癌新的治疗靶点。

A transcriptome-based protein network that identifies new therapeutic targets in colorectal cancer.

机构信息

INSERM 1078 Unit, "Cancérologie appliquée et épissage alternatif" team, Brest Institute of Health, Agronomy and Material (IBSAM), Faculty of medicine, University of Western Brittany (UBO), 22 avenue Camille Desmoulins, F-29200, Brest, France.

Department of Pathology, Brest University Hospital, F-29200, Brest, France.

出版信息

BMC Genomics. 2017 Sep 30;18(1):758. doi: 10.1186/s12864-017-4139-y.

Abstract

BACKGROUND

Colon cancer occurrence is increasing worldwide, making it the third most frequent cancer. Although many therapeutic options are available and quite efficient at the early stages, survival is strongly decreased when the disease has spread to other organs. The identification of molecular markers of colon cancer is likely to help understanding its course and, eventually, to uncover novel genes to be targeted by drugs. In this study, we compared gene expression in a set of 95 human colon cancer samples to that in 19 normal colon mucosae, focusing on 401 genes from 5 selected pathways (Apoptosis, Cancer, Cholesterol metabolism and lipoprotein signaling, Drug metabolism, Wnt/beta-catenin). Deregulation of mRNA levels largely matched that of proteins, leading us to build in silico protein networks, starting from mRNA levels, to identify key proteins central to network activity.

RESULTS

Among the analyzed genes, 10.5% (42) had no reported link with colon cancer, including the SFRP1, IGF1 and ADH1B (down), and MYC and IL8 (up), whose encoded proteins were most interacting with other proteins from the same or even distinct networks. Analyzing all pathways globally led us to uncover novel functional links between a priori unrelated or rather remotely connected pathways, such as the Drug metabolism and the Cancer pathways or, even more strikingly, between the Cholesterol metabolism and lipoprotein signaling and the Cancer pathways. In addition, we analyzed the responsiveness of some of the deregulated genes essential to network activities, to chemotherapeutic agents used alone or in presence of Lovastatin, a lipid-lowering drug. Some of these treatments could oppose the deregulations occurring in cancer samples, including those of the CHECK2, CYP51A1, HMGCS1, ITGA2, NME1 or VEGFA genes.

CONCLUSIONS

Our network-based approach allowed discovering genes not previously known to play regulatory roles in colon cancer. Our results also showed that selected drug treatments might revert the cancer-specific deregulation of genes playing prominent roles within the networks operating to maintain colon homeostasis. Among those genes, some could constitute novel testable targets to eliminate colon cancer cells, either directly or, potentially, through the use of lipid-lowering drugs such as statins, in association with selected anticancer drugs.

摘要

背景

结肠癌的发病率在全球范围内呈上升趋势,已成为第三大常见癌症。尽管在早期阶段有许多治疗选择且相当有效,但当疾病扩散到其他器官时,生存率会大大降低。鉴定结肠癌的分子标志物可能有助于了解其病程,并最终发现新的可作为药物靶点的基因。在这项研究中,我们比较了 95 个人类结肠癌样本和 19 个正常结肠黏膜的基因表达,重点关注 5 个选定途径(细胞凋亡、癌症、胆固醇代谢和脂蛋白信号转导、药物代谢、Wnt/β-catenin)中的 401 个基因。mRNA 水平的失调与蛋白质的失调基本一致,这使我们能够从 mRNA 水平开始构建计算机模拟的蛋白质网络,以确定对网络活动起关键作用的核心蛋白质。

结果

在分析的基因中,10.5%(42 个)与结肠癌没有报道的联系,包括 SFRP1、IGF1 和 ADH1B(下调)以及 MYC 和 IL8(上调),它们编码的蛋白质与来自同一网络甚至不同网络的其他蛋白质相互作用最多。全面分析所有途径使我们发现了先前不相关或关系较远的途径之间的新的功能联系,例如药物代谢和癌症途径,甚至更引人注目地,胆固醇代谢和脂蛋白信号转导与癌症途径之间的联系。此外,我们还分析了一些对网络活动至关重要的失调基因对单独使用或联合使用洛伐他汀(一种降脂药物)等化疗药物的反应性。这些治疗方法中的一些可能会对抗癌症样本中发生的失调,包括 CHECK2、CYP51A1、HMGCS1、ITGA2、NME1 或 VEGFA 基因的失调。

结论

我们基于网络的方法发现了以前未知的在结肠癌中起调节作用的基因。我们的结果还表明,选定的药物治疗可能会使基因发生的癌症特异性失调逆转,这些基因在维持结肠稳态的网络中发挥着重要作用。在这些基因中,一些可能成为新的可测试的靶点,以消除结肠癌细胞,无论是直接的,还是通过使用降脂药物(如他汀类药物)联合选定的抗癌药物,潜在地。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5971/5622428/39b8001db942/12864_2017_4139_Fig1_HTML.jpg

相似文献

1
A transcriptome-based protein network that identifies new therapeutic targets in colorectal cancer.
BMC Genomics. 2017 Sep 30;18(1):758. doi: 10.1186/s12864-017-4139-y.
2
Identification of key genes in colorectal cancer using random walk with restart.
Mol Med Rep. 2017 Feb;15(2):867-872. doi: 10.3892/mmr.2016.6058. Epub 2016 Dec 19.
3
A novel ent-kaurane diterpenoid executes antitumor function in colorectal cancer cells by inhibiting Wnt/β-catenin signaling.
Carcinogenesis. 2015 Mar;36(3):318-26. doi: 10.1093/carcin/bgv003. Epub 2015 Jan 18.
4
ITF2 prevents activation of the β-catenin-TCF4 complex in colon cancer cells and levels decrease with tumor progression.
Gastroenterology. 2014 Aug;147(2):430-442.e8. doi: 10.1053/j.gastro.2014.04.047. Epub 2014 May 15.
5
Identification of key pathways and genes in colorectal cancer using bioinformatics analysis.
Med Oncol. 2016 Oct;33(10):111. doi: 10.1007/s12032-016-0829-6. Epub 2016 Aug 31.
6
The effect of statins in colorectal cancer is mediated through the bone morphogenetic protein pathway.
Gastroenterology. 2007 Oct;133(4):1272-81. doi: 10.1053/j.gastro.2007.08.021. Epub 2007 Aug 14.
7
Integrated regulatory mechanisms of miRNAs and targeted genes involved in colorectal cancer.
Int J Clin Exp Pathol. 2015 Jan 1;8(1):517-29. eCollection 2015.
8
Prediction of novel target genes and pathways involved in bevacizumab-resistant colorectal cancer.
PLoS One. 2018 Jan 17;13(1):e0189582. doi: 10.1371/journal.pone.0189582. eCollection 2018.
9
Charting the molecular links between driver and susceptibility genes in colorectal cancer.
Biochem Biophys Res Commun. 2014 Mar 21;445(4):734-8. doi: 10.1016/j.bbrc.2013.12.012. Epub 2014 Jan 9.

引用本文的文献

本文引用的文献

1
2
Systematic tracking of disrupted modules identifies significant genes and pathways in hepatocellular carcinoma.
Oncol Lett. 2016 Nov;12(5):3285-3295. doi: 10.3892/ol.2016.5039. Epub 2016 Aug 23.
3
Identification of key pathways and genes in colorectal cancer using bioinformatics analysis.
Med Oncol. 2016 Oct;33(10):111. doi: 10.1007/s12032-016-0829-6. Epub 2016 Aug 31.
4
The interplay between cell signalling and the mevalonate pathway in cancer.
Nat Rev Cancer. 2016 Nov;16(11):718-731. doi: 10.1038/nrc.2016.76. Epub 2016 Aug 26.
5
FGFR2 overexpression predicts survival outcome in patients with metastatic papillary renal cell carcinoma.
Clin Transl Oncol. 2017 Feb;19(2):265-268. doi: 10.1007/s12094-016-1524-y. Epub 2016 Jul 5.
6
Validation of Novel Biomarkers for Prostate Cancer Progression by the Combination of Bioinformatics, Clinical and Functional Studies.
PLoS One. 2016 May 19;11(5):e0155901. doi: 10.1371/journal.pone.0155901. eCollection 2016.
8
Colorectal cancer.
Nat Rev Dis Primers. 2015 Nov 5;1:15065. doi: 10.1038/nrdp.2015.65.
10
STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data.
Nucleic Acids Res. 2016 Jan 4;44(D1):D380-4. doi: 10.1093/nar/gkv1277. Epub 2015 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验