Biostatistics Core, Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA.
Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.
Malar J. 2017 Sep 29;16(1):391. doi: 10.1186/s12936-017-2041-3.
Plasmodium falciparum infections are especially severe in pregnant women because infected erythrocytes (IE) express VAR2CSA, a ligand that binds to placental trophoblasts, causing IE to accumulate in the placenta. Resulting inflammation and pathology increases a woman's risk of anemia, miscarriage, premature deliveries, and having low birthweight (LBW) babies. Antibodies (Ab) to VAR2CSA reduce placental parasitaemia and improve pregnancy outcomes. Currently, no single assay is able to predict if a woman has adequate immunity to prevent placental malaria (PM). This study measured Ab levels to 28 malarial antigens and used the data to develop statistical models for predicting if a woman has sufficient immunity to prevent PM.
Archival plasma samples from 1377 women were screened in a bead-based multiplex assay for Ab to 17 VAR2CSA-associated antigens (full length VAR2CSA (FV2), DBL 1-6 of the FCR3, 3D7 and 7G8 lines, ID1-ID2a (FCR3 and 3D7) and 11 antigens that have been reported to be associated with immunity to P. falciparum (AMA-1, CSP, EBA-175, LSA1, MSP1, MSP2, MSP3, MSP11, Pf41, Pf70 and RESA)). Ab levels along with clinical variables (age, gravidity) were used in the following seven statistical approaches: logistic regression full model, logistic regression reduced model, recursive partitioning, random forests, linear discriminant analysis, quadratic discriminant analysis, and support vector machine.
The best and simplest model proved to be the logistic regression reduced model. AMA-1, MSP2, EBA-175, Pf41, and MSP11 were found to be the top five most important predictors for the PM status based on overall prediction performance.
Not surprising, significant differences were observed between PM positive (PM+) and PM negative (PM-) groups for Ab levels to the majority of malaria antigens. Individually though, these malarial antigens did not achieve reasonably high performances in terms of predicting the PM status. Utilizing multiple antigens in predictive models considerably improved discrimination power compared to individual assays. Among seven different classifiers considered, the reduced logistic regression model produces the best overall predictive performance.
恶性疟原虫感染在孕妇中尤为严重,因为感染的红细胞(IE)表达 VAR2CSA,这是一种与胎盘滋养层结合的配体,导致 IE 在胎盘内积聚。由此产生的炎症和病理增加了妇女患贫血、流产、早产和低出生体重(LBW)婴儿的风险。针对 VAR2CSA 的抗体(Ab)可减少胎盘疟原虫血症并改善妊娠结局。目前,尚无单一检测方法能够预测女性是否具有足够的免疫力来预防胎盘疟疾(PM)。本研究测量了 1377 名妇女的存档血浆样本中 28 种疟原虫抗原的 Ab 水平,并利用这些数据开发了统计模型,以预测妇女是否具有足够的免疫力来预防 PM。
在基于珠子的多重分析中,对 1377 名妇女的存档血浆样本进行了筛选,以检测针对 17 种 VAR2CSA 相关抗原(全长 VAR2CSA(FV2)、FCR3 的 DBL 1-6、3D7 和 7G8 系、ID1-ID2a(FCR3 和 3D7)和 11 种已报道与恶性疟原虫免疫力相关的抗原(AMA-1、CSP、EBA-175、LSA1、MSP1、MSP2、MSP3、MSP11、Pf41、Pf70 和 RESA))的 Ab 水平。Ab 水平以及临床变量(年龄、孕次)被用于以下七种统计方法:逻辑回归全模型、逻辑回归简化模型、递归分区、随机森林、线性判别分析、二次判别分析和支持向量机。
最佳和最简单的模型被证明是逻辑回归简化模型。基于整体预测性能,AMA-1、MSP2、EBA-175、Pf41 和 MSP11 被发现是 PM 状态的五个最重要的预测因子。
不出所料,PM 阳性(PM+)和 PM 阴性(PM-)组之间观察到针对大多数疟原虫抗原的 Ab 水平存在显著差异。然而,单独来看,这些疟原虫抗原在预测 PM 状态方面并未取得相当高的性能。与单个检测相比,利用多个抗原在预测模型中可以大大提高区分能力。在所考虑的七种不同分类器中,简化的逻辑回归模型产生了最佳的整体预测性能。