Suppr超能文献

用于精确共振峰检测与估计的语音准封闭相前后向线性预测分析。

Quasi-closed phase forward-backward linear prediction analysis of speech for accurate formant detection and estimation.

作者信息

Gowda Dhananjaya, Airaksinen Manu, Alku Paavo

机构信息

Department of Signal Processing and Acoustics, Aalto University, Otakaari 5, FI-00076 Espoo, Finland.

出版信息

J Acoust Soc Am. 2017 Sep;142(3):1542. doi: 10.1121/1.5001512.

Abstract

Recently, a quasi-closed phase (QCP) analysis of speech signals for accurate glottal inverse filtering was proposed. However, the QCP analysis which belongs to the family of temporally weighted linear prediction (WLP) methods uses the conventional forward type of sample prediction. This may not be the best choice especially in computing WLP models with a hard-limiting weighting function. A sample selective minimization of the prediction error in WLP reduces the effective number of samples available within a given window frame. To counter this problem, a modified quasi-closed phase forward-backward (QCP-FB) analysis is proposed, wherein each sample is predicted based on its past as well as future samples thereby utilizing the available number of samples more effectively. Formant detection and estimation experiments on synthetic vowels generated using a physical modeling approach as well as natural speech utterances show that the proposed QCP-FB method yields statistically significant improvements over the conventional linear prediction and QCP methods.

摘要

最近,有人提出了一种用于精确声门逆滤波的语音信号准封闭相位(QCP)分析方法。然而,属于时间加权线性预测(WLP)方法家族的QCP分析使用的是传统的前向样本预测类型。这可能不是最佳选择,特别是在计算具有硬限幅加权函数的WLP模型时。WLP中预测误差的样本选择性最小化会减少给定窗口帧内可用样本的有效数量。为了解决这个问题,提出了一种改进的准封闭相位前向-后向(QCP-FB)分析方法,其中每个样本基于其过去和未来的样本进行预测,从而更有效地利用可用样本数量。对使用物理建模方法生成的合成元音以及自然语音发声进行的共振峰检测和估计实验表明,所提出的QCP-FB方法相对于传统线性预测和QCP方法在统计上有显著改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验