Davis Gwynne L, Stewart Adele, Stanwood Gregg D, Gowrishankar Raajaram, Hahn Maureen K, Blakely Randy D
Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States.
Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States; Brain Institute, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, United States.
Behav Brain Res. 2018 Jan 30;337:61-69. doi: 10.1016/j.bbr.2017.09.043. Epub 2017 Sep 28.
Recent genetic analyses have provided evidence that clinical commonalities associated with different psychiatric diagnoses often have shared mechanistic underpinnings. The development of animal models expressing functional genetic variation attributed to multiple disorders offers a salient opportunity to capture molecular, circuit and behavioral alterations underlying this hypothesis. In keeping with studies suggesting dopaminergic contributions to attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BPD) and autism spectrum disorder (ASD), subjects with these diagnoses have been found to express a rare, functional coding substitution in the dopamine (DA) transporter (DAT), Ala559Val. We developed DAT Val559 knock-in mice as a construct valid model of dopaminergic alterations that drive multiple clinical phenotypes, and here evaluate the impact of lifelong expression of the variant on impulsivity and motivation utilizing the 5- choice serial reaction time task (5-CSRTT) and Go/NoGo as well as tests of time estimation (peak interval analysis), reward salience (sucrose preference), and motivation (progressive ratio test). Our findings indicate that the DAT Val559 variant induces impulsivity behaviors that are dependent upon the reward context, with increased impulsive action observed when mice are required to delay responding for a reward, whereas mice are able to withhold responding if there is a probability of reward for a correct rejection. Utilizing peak interval and progressive ratio tests, we provide evidence that impulsivity is likely driven by an enhanced motivational phenotype that also may drive faster task acquisition in operant tasks. These data provide critical validation that DAT, and more generally, DA signaling perturbations can drive impulsivity that can manifest in specific contexts and not others, and may rely on motivational alterations, which may also drive increased maladaptive reward seeking.
最近的基因分析提供了证据,表明与不同精神疾病诊断相关的临床共性往往具有共同的机制基础。表达归因于多种疾病的功能性基因变异的动物模型的开发,为捕捉这一假设背后的分子、神经回路和行为改变提供了一个显著的机会。与表明多巴胺能对注意力缺陷多动障碍(ADHD)、双相情感障碍(BPD)和自闭症谱系障碍(ASD)有影响的研究一致,已发现患有这些疾病的受试者在多巴胺(DA)转运体(DAT)中表达一种罕见的功能性编码替代,即丙氨酸559缬氨酸(Ala559Val)。我们开发了DAT Val559基因敲入小鼠,作为驱动多种临床表型的多巴胺能改变的构建有效模型,并在此利用五选择连续反应时任务(5-CSRTT)、Go/NoGo以及时间估计测试(峰值间隔分析)、奖励显著性(蔗糖偏好)和动机测试(累进比率测试),评估该变异的终身表达对冲动性和动机的影响。我们的研究结果表明,DAT Val559变异诱导的冲动行为取决于奖励背景,当要求小鼠延迟对奖励的反应时,观察到冲动行为增加,而如果正确拒绝有奖励的可能性,小鼠能够抑制反应。利用峰值间隔和累进比率测试,我们提供了证据表明冲动性可能是由增强的动机表型驱动的,这也可能在操作性任务中推动更快的任务习得。这些数据提供了关键的验证,即DAT,更普遍地说,DA信号扰动可以驱动冲动性,这种冲动性可能在特定背景下而非其他背景下表现出来,并且可能依赖于动机改变,这也可能导致适应不良的奖励寻求增加。