Suppr超能文献

智能安全家居:对感知、评估和应对安全威胁的智能家居技术的调查。

Smart Secure Homes: A Survey of Smart Home Technologies that Sense, Assess, and Respond to Security Threats.

作者信息

Dahmen Jessamyn, Cook Diane J, Wang Xiaobo, Honglei Wang

机构信息

School of Electrical Engineering and Computer Science, Washington State University.

Huawei R&D USA, FutureWei Technologies, Inc.

出版信息

J Reliab Intell Environ. 2017 Aug;3(2):83-98. doi: 10.1007/s40860-017-0035-0. Epub 2017 Feb 15.

Abstract

Smart home design has undergone a metamorphosis in recent years. The field has evolved from designing theoretical smart home frameworks and performing scripted tasks in laboratories. Instead, we now find robust smart home technologies that are commonly used by large segments of the population in a variety of settings. Recent smart home applications are focused on activity recognition, health monitoring, and automation. In this paper, we take a look at another important role for smart homes: security. We first explore the numerous ways smart homes can and do provide protection for their residents. Next, we provide a comparative analysis of the alternative tools and research that has been developed for this purpose. We investigate not only existing commercial products that have been introduced but also discuss the numerous research that has been focused on detecting and identifying potential threats. Finally, we close with open challenges and ideas for future research that will keep individuals secure and healthy while in their own homes.

摘要

近年来,智能家居设计经历了一次蜕变。该领域已从设计理论智能家居框架并在实验室中执行脚本任务发展而来。相反,我们现在看到了强大的智能家居技术,这些技术在各种环境中被广大人群普遍使用。最近的智能家居应用集中在活动识别、健康监测和自动化方面。在本文中,我们来看看智能家居的另一个重要作用:安全。我们首先探讨智能家居能够且确实为其居民提供保护的多种方式。接下来,我们对为此目的而开发的替代工具和研究进行比较分析。我们不仅调查已推出的现有商业产品,还讨论众多专注于检测和识别潜在威胁的研究。最后,我们以开放挑战和未来研究思路作为结尾,这些研究将在人们居家时保障其安全与健康。

相似文献

1
Smart Secure Homes: A Survey of Smart Home Technologies that Sense, Assess, and Respond to Security Threats.
J Reliab Intell Environ. 2017 Aug;3(2):83-98. doi: 10.1007/s40860-017-0035-0. Epub 2017 Feb 15.
3
Activity Learning as a Foundation for Security Monitoring in Smart Homes.
Sensors (Basel). 2017 Mar 31;17(4):737. doi: 10.3390/s17040737.
4
Improved MQTT Secure Transmission Flags in Smart Homes.
Sensors (Basel). 2022 Mar 10;22(6):2174. doi: 10.3390/s22062174.
5
IoT based smart home automation using blockchain and deep learning models.
PeerJ Comput Sci. 2023 May 22;9:e1332. doi: 10.7717/peerj-cs.1332. eCollection 2023.
6
A Secure and Lightweight Authentication Protocol for IoT-Based Smart Homes.
Sensors (Basel). 2021 Feb 21;21(4):1488. doi: 10.3390/s21041488.
7
Exploring the critical quality attributes and models of smart homes.
Maturitas. 2015 Dec;82(4):377-86. doi: 10.1016/j.maturitas.2015.07.025. Epub 2015 Aug 1.
8
A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network.
Sensors (Basel). 2016 Dec 30;17(1):69. doi: 10.3390/s17010069.
10
Towards Smart Home Automation Using IoT-Enabled Edge-Computing Paradigm.
Sensors (Basel). 2021 Jul 20;21(14):4932. doi: 10.3390/s21144932.

引用本文的文献

3
A Multi-Resident Number Estimation Method for Smart Homes.
Sensors (Basel). 2022 Jun 25;22(13):4823. doi: 10.3390/s22134823.
4
Study of Effectiveness of Prior Knowledge for Smart Home Kit Installation.
Sensors (Basel). 2020 Oct 29;20(21):6145. doi: 10.3390/s20216145.
5
Location-aware systems or location-based services: a survey with applications to CoViD-19 contact tracking.
J Reliab Intell Environ. 2020;6(4):191-214. doi: 10.1007/s40860-020-00111-4. Epub 2020 Sep 24.

本文引用的文献

1
A Survey of Methods for Time Series Change Point Detection.
Knowl Inf Syst. 2017 May;51(2):339-367. doi: 10.1007/s10115-016-0987-z. Epub 2016 Sep 8.
2
Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: a machine learning approach.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3712-3715. doi: 10.1109/EMBC.2016.7591534.
3
Testing non-wearable fall detection methods in the homes of older adults.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:557-560. doi: 10.1109/EMBC.2016.7590763.
4
One-Class Classification-Based Real-Time Activity Error Detection in Smart Homes.
IEEE J Sel Top Signal Process. 2016 Aug;10(5):914-923. doi: 10.1109/JSTSP.2016.2535972. Epub 2016 Feb 29.
5
Forecasting behavior in smart homes based on sleep and wake patterns.
Technol Health Care. 2017;25(1):89-110. doi: 10.3233/THC-161255.
6
Unsupervised detection and analysis of changes in everyday physical activity data.
J Biomed Inform. 2016 Oct;63:54-65. doi: 10.1016/j.jbi.2016.07.020. Epub 2016 Jul 25.
7
A Smart Spoofing Face Detector by Display Features Analysis.
Sensors (Basel). 2016 Jul 21;16(7):1136. doi: 10.3390/s16071136.
8
Modeling Patterns of Activities using Activity Curves.
Pervasive Mob Comput. 2016 Jun;28:51-68. doi: 10.1016/j.pmcj.2015.09.007.
9
Automated Cognitive Health Assessment From Smart Home-Based Behavior Data.
IEEE J Biomed Health Inform. 2016 Jul;20(4):1188-94. doi: 10.1109/JBHI.2015.2445754. Epub 2015 Aug 17.
10
Analyzing Activity Behavior and Movement in a Naturalistic Environment Using Smart Home Techniques.
IEEE J Biomed Health Inform. 2015 Nov;19(6):1882-92. doi: 10.1109/JBHI.2015.2461659. Epub 2015 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验