Department of Chemical Sciences, Clifford University, Owerrinta, Nigeria.
Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.
J Mol Model. 2023 Jul 5;29(8):229. doi: 10.1007/s00894-023-05627-z.
Nanosensor materials for the trapping and sensing of CO gas in the ecosystem were investigated herein to elucidate the adsorption, sensibility, selectivity, conductivity, and reactivity of silicon-doped carbon quantum dot (Si@CQD) decorated with Ag, Au, and Cu metals. The gas was studied in two configurations on its O and C sites. When the metal-decorated Si@CQD interacted with the CO gas on the C adsorption site of the gas, there was a decrease in all the interactions with the lowest energy gap of 1.084 eV observed in CO_C_Cu_Si@CQD followed by CO_C_Au_Si@CQD which recorded a slightly higher energy gap of 1.094 eV, while CO_C_Ag_Si@CQD had an energy gap of 2.109 eV. On the O adsorption sites, a decrease was observed in CO_O_Au_Si@CQD which had the least energy gap of 1.140 eV, whereas there was a significant increase after adsorption in CO_O_Ag_Si@CQD and CO_O_Cu_Si@CQD with calculated ∆E values of 2.942 eV and 3.015 eV respectively. The adsorption energy alongside the basis set supposition error (BSSE) estimation reveals that CO_C_Au_Si@CQD, CO_C_Ag_Si@CQD, and CO_C_Cu_Si@CQD were weakly adsorbed, while chemisorption was present in the CO_O_Ag_Si@CQD, CO_O_Cu_Si@CQD, and CO_O_Au_Si@CQD interactions. Indeed, the adsorption of CO on the different metal-decorated quantum dots affects the Fermi level (E) and the work function (Φ) of each of the decorated carbon quantum dots owed to their low E values and high ∆Φ% which shows that they can be a prospective work function-based sensor material.
Electronic structure theory method based on first-principle density functional theory (DFT) computation at the B3LYP-GD3(BJ)/Def2-SVP level of theory was utilized through the use of the Gaussian 16 and GaussView 6.0.16 software packages. Post-processing computational code such as multi-wavefunction was employed for result analysis and visualization.
本文研究了用于捕获和检测生态系统中 CO 气体的纳米传感器材料,以阐明掺硅碳量子点(Si@CQD)上的 Ag、Au 和 Cu 金属的吸附、敏感性、选择性、导电性和反应性。该气体在其 O 和 C 位置的两种构型下进行了研究。当金属修饰的 Si@CQD 与 CO 气体在气体的 C 吸附位相互作用时,所有相互作用的能量间隙都减小,观察到最低能量间隙为 1.084 eV 的是 CO_C_Cu_Si@CQD,其次是 CO_C_Au_Si@CQD,其记录的能量间隙略高,为 1.094 eV,而 CO_C_Ag_Si@CQD 的能量间隙为 2.109 eV。在 O 吸附位上,观察到 CO_O_Au_Si@CQD 的能量间隙减小,其能量间隙最小为 1.140 eV,而在 CO_O_Ag_Si@CQD 和 CO_O_Cu_Si@CQD 吸附后,能量间隙显著增加,计算得出的 ∆E 值分别为 2.942 eV 和 3.015 eV。吸附能和基组假设误差(BSSE)估计表明,CO_C_Au_Si@CQD、CO_C_Ag_Si@CQD 和 CO_C_Cu_Si@CQD 吸附较弱,而 CO_O_Ag_Si@CQD、CO_O_Cu_Si@CQD 和 CO_O_Au_Si@CQD 相互作用则存在化学吸附。实际上,CO 对不同金属修饰量子点的吸附会影响每个修饰碳量子点的费米能级(E)和功函数(Φ),这是由于它们的低 E 值和高 ∆Φ%,这表明它们可以成为一种有前途的基于功函数的传感器材料。
使用第一性原理密度泛函理论(DFT)计算,基于 B3LYP-GD3(BJ)/Def2-SVP 理论水平,在 Gaussian 16 和 GaussView 6.0.16 软件包中利用电子结构理论方法。采用多波函数等后处理计算代码进行结果分析和可视化。