文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

NRF2 抗氧化程序的激活会导致癌症中心碳代谢失衡。

Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer.

机构信息

Department of Pathology, New York University School of Medicine, New York, United States.

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.

出版信息

Elife. 2017 Oct 2;6:e28083. doi: 10.7554/eLife.28083.


DOI:10.7554/eLife.28083
PMID:28967864
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5624783/
Abstract

During tumorigenesis, the high metabolic demand of cancer cells results in increased production of reactive oxygen species. To maintain oxidative homeostasis, tumor cells increase their antioxidant production through hyperactivation of the NRF2 pathway, which promotes tumor cell growth. Despite the extensive characterization of NRF2-driven metabolic rewiring, little is known about the metabolic liabilities generated by this reprogramming. Here, we show that activation of NRF2, in either mouse or human cancer cells, leads to increased dependency on exogenous glutamine through increased consumption of glutamate for glutathione synthesis and glutamate secretion by x antiporter system. Together, this limits glutamate availability for the tricarboxylic acid cycle and other biosynthetic reactions creating a metabolic bottleneck. Cancers with genetic or pharmacological activation of the NRF2 antioxidant pathway have a metabolic imbalance between supporting increased antioxidant capacity over central carbon metabolism, which can be therapeutically exploited.

摘要

在肿瘤发生过程中,癌细胞的高代谢需求导致活性氧的产生增加。为了维持氧化平衡,肿瘤细胞通过 NRF2 通路的过度激活增加抗氧化剂的产生,从而促进肿瘤细胞的生长。尽管 NRF2 驱动的代谢重编程已经得到了广泛的描述,但对于这种重编程产生的代谢缺陷知之甚少。在这里,我们表明,无论是在小鼠还是人类癌细胞中激活 NRF2,都会通过增加谷氨酰胺的消耗(用于谷胱甘肽的合成)和通过 x 反向转运蛋白系统的谷氨酸分泌,导致对外源性谷氨酰胺的依赖性增加。总的来说,这限制了三羧酸循环和其他生物合成反应所需的谷氨酸可用性,从而形成了代谢瓶颈。通过遗传或药理学激活 NRF2 抗氧化途径的癌症,在支持增加抗氧化能力与中央碳代谢之间存在代谢失衡,这可以作为一种治疗手段加以利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/cb3bdda54633/elife-28083-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/071f8866a4f9/elife-28083-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/6bd11f169fe7/elife-28083-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/109b5344bffd/elife-28083-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/e587b07b0d22/elife-28083-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/3844e476411d/elife-28083-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/c4a15c2c57e1/elife-28083-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/77d2ef6e387d/elife-28083-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/7a107202a456/elife-28083-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/4f33443a5cc7/elife-28083-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/27a1df6ac1a2/elife-28083-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/0b57543329b6/elife-28083-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/ecf17031b7ec/elife-28083-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/b2962646fa06/elife-28083-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/cb3bdda54633/elife-28083-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/071f8866a4f9/elife-28083-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/6bd11f169fe7/elife-28083-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/109b5344bffd/elife-28083-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/e587b07b0d22/elife-28083-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/3844e476411d/elife-28083-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/c4a15c2c57e1/elife-28083-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/77d2ef6e387d/elife-28083-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/7a107202a456/elife-28083-fig3-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/4f33443a5cc7/elife-28083-fig3-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/27a1df6ac1a2/elife-28083-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/0b57543329b6/elife-28083-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/ecf17031b7ec/elife-28083-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/b2962646fa06/elife-28083-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ad/5624783/cb3bdda54633/elife-28083-fig5-figsupp1.jpg

相似文献

[1]
Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer.

Elife. 2017-10-2

[2]
Activation of Oxidative Stress Response in Cancer Generates a Druggable Dependency on Exogenous Non-essential Amino Acids.

Cell Metab. 2020-2-4

[3]
Nrf2 promotes oesophageal cancer cell proliferation via metabolic reprogramming and detoxification of reactive oxygen species.

J Pathol. 2018-1-29

[4]
Expression of xCT and activity of system xc(-) are regulated by NRF2 in human breast cancer cells in response to oxidative stress.

Redox Biol. 2015-8

[5]
The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility.

Nat Commun. 2017-4-21

[6]
Activation of the Nrf2-regulated antioxidant cell response inhibits HEMA-induced oxidative stress and supports cell viability.

Biomaterials. 2015-4-16

[7]
Targeting of the Glutathione, Thioredoxin, and Nrf2 Antioxidant Systems in Head and Neck Cancer.

Antioxid Redox Signal. 2016-11-14

[8]
Sulforaphane rewires central metabolism to support antioxidant response and achieve glucose homeostasis.

Redox Biol. 2023-11

[9]
Oxidative stress responses and NRF2 in human leukaemia.

Oxid Med Cell Longev. 2015

[10]
Myeloid lineage-specific deletion of antioxidant system enhances tumor metastasis.

Cancer Prev Res (Phila). 2014-8

引用本文的文献

[1]
Pharmacometabolomics uncovers key metabolic changes in the first-in-human study of β-lapachone derivative.

Metabolomics. 2025-8-19

[2]
NRF2 activation in cancer and overview of NRF2 small molecule inhibitors.

Arch Pharm Res. 2025-8-15

[3]
Repurposing Asparaginase Therapy to Target Cisplatin-Resistant Cancer Cells.

Fundam Clin Pharmacol. 2025-10

[4]
The Central Role of NRF2 in Cancer Metabolism and Redox Signaling: Novel Insights into Crosstalk with ER Stress and Therapeutic Modulation.

Cell Biochem Biophys. 2025-7-15

[5]
Involvement of KEAP1/NRF2 pathway in non-BRAF mutated squamous cell carcinoma of the thyroid.

J Pathol. 2025-8

[6]
Therapeutic potential of NRF2 activating drug RTA-408 in suppressing T cell effector responses and inflammatory bowel disease.

J Immunol. 2025-8-1

[7]
Glutamine Metabolism: Molecular Regulation, Biological Functions, and Diseases.

MedComm (2020). 2025-6-25

[8]
Lymphatic Metastasis of Esophageal Squamous Cell Carcinoma: The Role of NRF2 and Therapeutic Strategies.

Cancers (Basel). 2025-5-31

[9]
Oxygen needs sulfur, sulfur needs oxygen: a relationship of interdependence.

EMBO J. 2025-5-20

[10]
Distinct roles for the thioredoxin and glutathione antioxidant systems in Nrf2-Mediated lung tumor initiation and progression.

Redox Biol. 2025-6

本文引用的文献

[1]
Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis.

Nat Med. 2017-11

[2]
Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism.

Nat Commun. 2017-7-3

[3]
The glutamate/cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate.

J Biol Chem. 2017-8-25

[4]
The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility.

Nat Commun. 2017-4-21

[5]
ROS in Cancer: The Burning Question.

Trends Mol Med. 2017-5

[6]
Understanding the Intersections between Metabolism and Cancer Biology.

Cell. 2017-2-9

[7]
Keap1/Nrf2 pathway in kidney cancer: frequent methylation of KEAP1 gene promoter in clear renal cell carcinoma.

Oncotarget. 2017-2-14

[8]
Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers.

Cell Rep. 2016-9-6

[9]
From Krebs to clinic: glutamine metabolism to cancer therapy.

Nat Rev Cancer. 2016-10

[10]
Fundamentals of cancer metabolism.

Sci Adv. 2016-5-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索