Romero Rodrigo, Sayin Volkan I, Davidson Shawn M, Bauer Matthew R, Singh Simranjit X, LeBoeuf Sarah E, Karakousi Triantafyllia R, Ellis Donald C, Bhutkar Arjun, Sánchez-Rivera Francisco J, Subbaraj Lakshmipriya, Martinez Britney, Bronson Roderick T, Prigge Justin R, Schmidt Edward E, Thomas Craig J, Goparaju Chandra, Davies Angela, Dolgalev Igor, Heguy Adriana, Allaj Viola, Poirier John T, Moreira Andre L, Rudin Charles M, Pass Harvey I, Vander Heiden Matthew G, Jacks Tyler, Papagiannakopoulos Thales
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Nat Med. 2017 Nov;23(11):1362-1368. doi: 10.1038/nm.4407. Epub 2017 Oct 2.
Treating KRAS-mutant lung adenocarcinoma (LUAD) remains a major challenge in cancer treatment given the difficulties associated with directly inhibiting the KRAS oncoprotein. One approach to addressing this challenge is to define mutations that frequently co-occur with those in KRAS, which themselves may lead to therapeutic vulnerabilities in tumors. Approximately 20% of KRAS-mutant LUAD tumors carry loss-of-function mutations in the KEAP1 gene encoding Kelch-like ECH-associated protein 1 (refs. 2, 3, 4), a negative regulator of nuclear factor erythroid 2-like 2 (NFE2L2; hereafter NRF2), which is the master transcriptional regulator of the endogenous antioxidant response. The high frequency of mutations in KEAP1 suggests an important role for the oxidative stress response in lung tumorigenesis. Using a CRISPR-Cas9-based approach in a mouse model of KRAS-driven LUAD, we examined the effects of Keap1 loss in lung cancer progression. We show that loss of Keap1 hyperactivates NRF2 and promotes KRAS-driven LUAD in mice. Through a combination of CRISPR-Cas9-based genetic screening and metabolomic analyses, we show that Keap1- or Nrf2-mutant cancers are dependent on increased glutaminolysis, and this property can be therapeutically exploited through the pharmacological inhibition of glutaminase. Finally, we provide a rationale for stratification of human patients with lung cancer harboring KRAS/KEAP1- or KRAS/NRF2-mutant lung tumors as likely to respond to glutaminase inhibition.
鉴于直接抑制KRAS癌蛋白存在困难,治疗KRAS突变型肺腺癌(LUAD)仍然是癌症治疗中的一项重大挑战。应对这一挑战的一种方法是确定那些经常与KRAS突变同时出现的突变,这些突变本身可能导致肿瘤产生治疗脆弱性。大约20%的KRAS突变型LUAD肿瘤在编码 Kelch样ECH相关蛋白1的KEAP1基因中携带功能丧失突变(参考文献2、3、4),KEAP1是核因子红细胞2样2(NFE2L2;以下简称NRF2)的负调节因子,而NRF2是内源性抗氧化反应的主要转录调节因子。KEAP1中高频率的突变表明氧化应激反应在肺癌发生中起重要作用。在KRAS驱动的LUAD小鼠模型中,我们采用基于CRISPR-Cas9的方法,研究了Keap1缺失对肺癌进展的影响。我们发现,Keap1的缺失会过度激活NRF2,并促进小鼠体内KRAS驱动的LUAD。通过基于CRISPR-Cas9的基因筛选和代谢组学分析相结合,我们发现Keap1或Nrf2突变的癌症依赖于增加的谷氨酰胺分解代谢,并且这一特性可以通过对谷氨酰胺酶的药理学抑制来进行治疗性利用。最后,我们为将携带KRAS/KEAP1或KRAS/NRF2突变型肺肿瘤的肺癌患者分层为可能对谷氨酰胺酶抑制有反应提供了理论依据。