Suppr超能文献

遗忘型轻度认知障碍患者向痴呆转化风险的预测模型:一项基于纵向、多中心临床的研究。

Prediction Model of Conversion to Dementia Risk in Subjects with Amnestic Mild Cognitive Impairment: A Longitudinal, Multi-Center Clinic-Based Study.

机构信息

Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea.

Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.

出版信息

J Alzheimers Dis. 2017;60(4):1579-1587. doi: 10.3233/JAD-170507.

Abstract

BACKGROUND

Patients with amnestic mild cognitive impairment (aMCI) have an increased risk of dementia. However, conversion rate varies. Therefore, predicting the dementia conversion in these patients is important.

OBJECTIVE

We aimed to develop a nomogram to predict dementia conversion in aMCI subjects using neuropsychological profiles.

METHODS

A total of 338 aMCI patients from two hospital-based cohorts were used in analysis. All patients were classified into 1) verbal, visual, or both, 2) early or late, and 3) single or multiple-domain aMCI according to the modality, severity of memory dysfunction, and multiplicity of involved cognitive domains, respectively. Patients were followed up, and conversion to dementia within 3 years was defined as the primary outcome. Our patients were divided into a training data set and a validation data set. The associations of potential covariates with outcome were tested, and nomogram was constructed by logistic regression model. We also developed another model with APOE data, which included 242 patients.

RESULTS

In logistic regression models, both modalities compared with visual only (OR 4.44, 95% CI 1.83-10.75, p = 0.001), late compared to early (OR 2.59, 95% CI 1.17-5.72, p = 0.019), and multiple compared to single domain (OR 3.51, 95% CI 1.62-7.60, p = 0.002) aMCI were significantly associated with dementia conversion within 3 years. A nomogram incorporating these clinical variables was constructed on the training data set and validated on the validation data set. Both nomograms with and without APOE data showed good prediction performance (c-statistics ≥ 0.75).

CONCLUSIONS

This study showed that several neuropsychological profiles of aMCI are significantly associated with imminent dementia conversion, and a nomogram incorporating these clinical subtypes is simple and useful to help to predict disease progression.

摘要

背景

遗忘型轻度认知障碍(aMCI)患者痴呆的风险增加。然而,转化率各不相同。因此,预测这些患者的痴呆转化非常重要。

目的

我们旨在使用神经心理学特征为 aMCI 患者开发一种预测痴呆转化的列线图。

方法

分析了来自两个基于医院队列的 338 名 aMCI 患者。根据模态、记忆功能障碍的严重程度和涉及的认知域的多发性,所有患者分别分为 1)言语、视觉或两者、2)早期或晚期和 3)单一或多个域 aMCI。对患者进行随访,定义 3 年内发生痴呆为主要结局。我们的患者分为训练数据集和验证数据集。测试了潜在协变量与结局的相关性,并通过逻辑回归模型构建了列线图。我们还使用包含 242 名患者的 APOE 数据开发了另一个模型。

结果

在逻辑回归模型中,与仅视觉相比,两种模态(比值比 4.44,95%置信区间 1.83-10.75,p=0.001)、晚期与早期相比(比值比 2.59,95%置信区间 1.17-5.72,p=0.019)和与单一域相比,多个域(比值比 3.51,95%置信区间 1.62-7.60,p=0.002)aMCI 与 3 年内的痴呆转化显著相关。在训练数据集上构建了一个包含这些临床变量的列线图,并在验证数据集上进行了验证。包含和不包含 APOE 数据的列线图均显示出良好的预测性能(C 统计量≥0.75)。

结论

这项研究表明,aMCI 的几个神经心理学特征与即将发生的痴呆转化显著相关,包含这些临床亚型的列线图简单且有助于预测疾病进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验