Suppr超能文献

雕刻法诺共振以控制光子-等离子体杂化。

Sculpting Fano Resonances To Control Photonic-Plasmonic Hybridization.

机构信息

Department of Applied Mathematics, University of Washington , Seattle, Washington 98195-3925, United States.

Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1322, United States.

出版信息

Nano Lett. 2017 Nov 8;17(11):6927-6934. doi: 10.1021/acs.nanolett.7b03332. Epub 2017 Oct 10.

Abstract

Hybrid photonic-plasmonic systems have tremendous potential as versatile platforms for the study and control of nanoscale light-matter interactions since their respective components have either high-quality factors or low mode volumes. Individual metallic nanoparticles deposited on optical microresonators provide an excellent example where ultrahigh-quality optical whispering-gallery modes can be combined with nanoscopic plasmonic mode volumes to maximize the system's photonic performance. Such optimization, however, is difficult in practice because of the inability to easily measure and tune critical system parameters. In this Letter, we present a general and practical method to determine the coupling strength and tailor the degree of hybridization in composite optical microresonator-plasmonic nanoparticle systems based on experimentally measured absorption spectra. Specifically, we use thermal annealing to control the detuning between a metal nanoparticle's localized surface plasmon resonance and the whispering-gallery modes of an optical microresonator cavity. We demonstrate the ability to sculpt Fano resonance lineshapes in the absorption spectrum and infer system parameters critical to elucidating the underlying photonic-plasmonic hybridization. We show that including decoherence processes is necessary to capture the evolution of the lineshapes. As a result, thermal annealing allows us to directly tune the degree of hybridization and various hybrid mode quantities such as the quality factor and mode volume and ultimately maximize the Purcell factor to be 10.

摘要

混合光子-等离子体系统具有巨大的潜力,可作为研究和控制纳米级光物质相互作用的多功能平台,因为它们各自的组件具有高品质因数或低模式体积。沉积在光学微谐振器上的单个金属纳米粒子就是一个极好的例子,其中超高品质的光学 whispering-gallery 模式可以与纳米级等离子体模式体积相结合,以最大化系统的光子性能。然而,由于无法轻松测量和调整关键系统参数,这种优化在实践中很难实现。在这封信中,我们提出了一种通用且实用的方法,可根据实验测量的吸收光谱确定复合光学微谐振器-等离子体纳米粒子系统中的耦合强度和调整杂交程度。具体来说,我们使用热退火来控制金属纳米粒子的局域表面等离激元共振与光学微谐振腔 whispering-gallery 模式之间的失谐。我们展示了在吸收光谱中雕刻 Fano 共振线形状并推断出对阐明潜在光子-等离子体杂交至关重要的系统参数的能力。我们表明,包括退相干过程对于捕捉线形状的演化是必要的。结果,热退火允许我们直接调整杂交程度和各种混合模式量,例如品质因数和模式体积,并最终使 Purcell 因子最大化到 10。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验