Suppr超能文献

福岛第一核电站事故早期森林地表沉降放射性铯的空间分布模式。

Spatial pattern of atmospherically deposited radiocesium on the forest floor in the early phase of the Fukushima Daiichi Nuclear Power Plant accident.

机构信息

Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba.

Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba.

出版信息

Sci Total Environ. 2018 Feb 15;615:187-196. doi: 10.1016/j.scitotenv.2017.09.212. Epub 2017 Sep 29.

Abstract

Spatial patterns of atmospherically deposited radiocesium on the forest floor and the temporal evolution were measured in two Japanese cedar stands and a secondary mixed broad-leaved forest in the early phase of the Fukushima Daiichi Nuclear Power Plant accident. In situ measurements of the Cs gamma count were made using a portable germanium gamma ray detector. These measurements revealed that the forest floors were contaminated with radionuclides derived from the accident. In the cedar stands, the inter-canopy area had higher Cs count rate relative to the under-canopy area, whereas no clear relationship was found between the radiocesium pattern and canopy cover in the mixed broad-leaved forest. Repeated radiocesium measurements revealed that the spatial pattern of radiocesium activity on the forest floor did not substantially change following additional deposition inputs. Furthermore, the magnitude of canopy cover partially explained spatial variability of the Cs on the forest floor in cedar stands. These results suggest that canopy structure affected the genesis of the horizontal variability of atmospherically deposited radiocesium on the forest floor during the early phase of the Fukushima accident.

摘要

在福岛第一核电站事故的早期阶段,我们测量了两个日本雪松林和一个次生混合阔叶林中森林地表的大气沉积放射性铯的空间分布模式及其时间演变。使用便携式锗伽马射线探测器对 Cs 伽马计数进行了现场测量。这些测量表明,森林地表受到了事故产生的放射性核素的污染。在雪松林中,林冠间隙区域的 Cs 计数率相对林冠下区域更高,而在混合阔叶林中,未发现放射性铯模式与林冠覆盖率之间存在明显关系。对放射性铯的重复测量表明,在进一步的沉积输入之后,森林地表放射性铯活性的空间模式没有发生实质性变化。此外,林冠覆盖率的大小部分解释了雪松林中 Cs 在森林地表的空间变异性。这些结果表明,在福岛事故的早期阶段,林冠结构影响了大气沉积放射性铯在森林地表水平变化的形成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验