Suppr超能文献

在存在可能的非单调性的情况下,类风湿关节炎 2a 期概念验证研究的设计考虑因素和分析计划。

Design considerations and analysis planning of a phase 2a proof of concept study in rheumatoid arthritis in the presence of possible non-monotonicity.

机构信息

GlaxoSmithKline, Inc, 1250 South Collegeville Road, PO Box 5089, Collegeville, PA, 19426-0989, USA.

Medical Statistics Group, University of Sheffield, Sheffield, UK.

出版信息

BMC Med Res Methodol. 2017 Oct 2;17(1):149. doi: 10.1186/s12874-017-0416-3.

Abstract

BACKGROUND

It is important to quantify the dose response for a drug in phase 2a clinical trials so the optimal doses can then be selected for subsequent late phase trials. In a phase 2a clinical trial of new lead drug being developed for the treatment of rheumatoid arthritis (RA), a U-shaped dose response curve was observed. In the light of this result further research was undertaken to design an efficient phase 2a proof of concept (PoC) trial for a follow-on compound using the lessons learnt from the lead compound.

METHODS

The planned analysis for the Phase 2a trial for GSK123456 was a Bayesian Emax model which assumes the dose-response relationship follows a monotonic sigmoid "S" shaped curve. This model was found to be suboptimal to model the U-shaped dose response observed in the data from this trial and alternatives approaches were needed to be considered for the next compound for which a Normal dynamic linear model (NDLM) is proposed. This paper compares the statistical properties of the Bayesian Emax model and NDLM model and both models are evaluated using simulation in the context of adaptive Phase 2a PoC design under a variety of assumed dose response curves: linear, Emax model, U-shaped model, and flat response.

RESULTS

It is shown that the NDLM method is flexible and can handle a wide variety of dose-responses, including monotonic and non-monotonic relationships. In comparison to the NDLM model the Emax model excelled with higher probability of selecting ED90 and smaller average sample size, when the true dose response followed Emax like curve. In addition, the type I error, probability of incorrectly concluding a drug may work when it does not, is inflated with the Bayesian NDLM model in all scenarios which would represent a development risk to pharmaceutical company. The bias, which is the difference between the estimated effect from the Emax and NDLM models and the simulated value, is comparable if the true dose response follows a placebo like curve, an Emax like curve, or log linear shape curve under fixed dose allocation, no adaptive allocation, half adaptive and adaptive scenarios. The bias though is significantly increased for the Emax model if the true dose response follows a U-shaped curve.

CONCLUSIONS

In most cases the Bayesian Emax model works effectively and efficiently, with low bias and good probability of success in case of monotonic dose response. However, if there is a belief that the dose response could be non-monotonic then the NDLM is the superior model to assess the dose response.

摘要

背景

在 2a 期临床试验中定量药物的剂量反应很重要,这样才能选择后续的晚期试验的最佳剂量。在一项针对新的类风湿关节炎(RA)治疗先导药物的 2a 期临床试验中,观察到了 U 型剂量反应曲线。鉴于这一结果,进一步的研究旨在利用先导化合物的经验教训,为后续化合物设计高效的 2a 期概念验证(PoC)试验。

方法

GSK123456 的 2a 期试验计划分析采用贝叶斯 Emax 模型,该模型假设剂量反应关系遵循单调的 S 型曲线。发现该模型不太适合对该试验数据中观察到的 U 型剂量反应进行建模,需要考虑替代方法,因此为后续化合物采用了正态动态线性模型(NDLM)。本文比较了贝叶斯 Emax 模型和 NDLM 模型的统计特性,并在各种假设的剂量反应曲线下,包括线性、Emax 模型、U 型模型和扁平反应,通过模拟对两种模型进行了评估。

结果

结果表明,NDLM 方法灵活,可以处理多种剂量反应,包括单调和非单调关系。与 NDLM 模型相比,Emax 模型在真实剂量反应遵循 Emax 样曲线时,更有可能选择 ED90 且平均样本量更小,选择正确的概率更高。此外,在所有情况下,贝叶斯 NDLM 模型都会导致 I 型错误增加,即当药物实际上不起作用时错误地认为药物可能有效,这对制药公司来说是一种开发风险。偏差是 Emax 和 NDLM 模型估计的效应与模拟值之间的差异,如果真实的剂量反应遵循安慰剂样曲线、Emax 样曲线或对数线性形状曲线,在固定剂量分配、无自适应分配、半自适应和自适应场景下,偏差是可以比较的。然而,如果真实的剂量反应遵循 U 型曲线,Emax 模型的偏差会显著增加。

结论

在大多数情况下,贝叶斯 Emax 模型在单调剂量反应的情况下,效果好且效率高,成功率高,偏差低。但是,如果认为剂量反应可能是非单调的,那么 NDLM 是评估剂量反应的优越模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98df/5625783/a69e292ad3b8/12874_2017_416_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验