Inhalation Toxicology Laboratory, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
Department of Biochemistry, Faculty of Science, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
Part Fibre Toxicol. 2017 Oct 2;14(1):39. doi: 10.1186/s12989-017-0220-6.
Toxicity of airborne particulate matter (PM) is difficult to assess because PM composition is complex and variable due to source contribution and atmospheric transformation. In this study, we used an in vitro toxicoproteomic approach to identify the toxicity mechanisms associated with different subfractions of Ottawa urban dust (EHC-93).
A549 human lung epithelial cells were exposed to 0, 60, 140 and 200 μg/cm doses of EHC-93 (total), its insoluble and soluble fractions for 24 h. Multiple cytotoxicity assays and proteomic analyses were used to assess particle toxicity in the exposed cells.
The cytotoxicity data based on cellular ATP, BrdU incorporation and LDH leakage indicated that the insoluble, but not the soluble, fraction is responsible for the toxicity of EHC-93 in A549 cells. Two-dimensional gel electrophoresis results revealed that the expressions of 206 protein spots were significantly altered after particle exposures, where 154 were identified by MALDI-TOF-TOF-MS/MS. The results from cytotoxicity assays and proteomic analyses converged to a similar finding that the effects of the total and insoluble fraction may be alike, but their effects were distinguishable, and their effects were significantly different from the soluble fraction. Furthermore, the toxic potency of EHC-93 total is not equal to the sum of its insoluble and soluble fractions, implying inter-component interactions between insoluble and soluble materials resulting in synergistic or antagonistic cytotoxic effects. Pathway analysis based on the low toxicity dose (60 μg/cm) indicated that the two subfractions can alter the expression of those proteins involved in pathways including cell death, cell proliferation and inflammatory response in a distinguishable manner. For example, the insoluble and soluble fractions differentially affected the secretion of pro-inflammatory cytokines such as MCP-1 and IL-8 and distinctly altered the expression of those proteins (e.g., TREM1, PDIA3 and ENO1) involved in an inflammatory response pathway in A549 cells.
This study demonstrated the impact of different fractions of urban air particles constituted of various chemical species on different mechanistic pathways and thus on cytotoxicity effects. In vitro toxicoproteomics can be a valuable tool in mapping these differences in air pollutant exposure-related toxicity mechanisms.
由于来源贡献和大气转化,空气中颗粒物(PM)的组成复杂且多变,因此其毒性难以评估。在这项研究中,我们使用体外毒理蛋白质组学方法来识别与渥太华城市尘(EHC-93)不同亚组分相关的毒性机制。
将 A549 人肺上皮细胞暴露于 0、60、140 和 200μg/cm 的 EHC-93(总量)、其不溶性和可溶性部分 24 小时。使用多种细胞毒性测定和蛋白质组学分析来评估暴露细胞中颗粒的毒性。
基于细胞内 ATP、BrdU 掺入和 LDH 渗漏的细胞毒性数据表明,不溶性部分而不是可溶性部分是 EHC-93 在 A549 细胞中产生毒性的原因。二维凝胶电泳结果显示,颗粒暴露后 206 个蛋白斑点的表达明显改变,其中 154 个通过 MALDI-TOF-TOF-MS/MS 鉴定。细胞毒性测定和蛋白质组学分析的结果得出了类似的结论,即总颗粒和不溶性部分的影响可能相似,但它们的作用可区分,并且它们的作用明显不同于可溶性部分。此外,EHC-93 总量的毒性强度不等于其不溶性和可溶性部分的总和,这意味着不溶性和可溶性物质之间存在相互作用,导致协同或拮抗的细胞毒性作用。基于低毒性剂量(60μg/cm)的途径分析表明,这两个亚组分可以以可区分的方式改变涉及细胞死亡、细胞增殖和炎症反应途径的那些蛋白的表达。例如,不溶性和可溶性部分对促炎细胞因子(如 MCP-1 和 IL-8)的分泌产生不同的影响,并明显改变了 A549 细胞中参与炎症反应途径的那些蛋白(如 TREM1、PDIA3 和 ENO1)的表达。
这项研究表明,由各种化学物质组成的城市空气颗粒的不同部分对不同的机制途径以及因此对细胞毒性作用产生影响。体外毒理蛋白质组学可以成为绘制这些与空气污染物暴露相关毒性机制差异的有价值的工具。