Gutt J, Isla E, Bertler A N, Bodeker G E, Bracegirdle T J, Cavanagh R D, Comiso J C, Convey P, Cummings V, De Conto R, De Master D, di Prisco G, d'Ovidio F, Griffiths H J, Khan A L, López-Martínez J, Murray A E, Nielsen U N, Ott S, Post A, Ropert-Coudert Y, Saucède T, Scherer R, Schiaparelli S, Schloss I R, Smith C R, Stefels J, Stevens C, Strugnell J M, Trimborn S, Verde C, Verleyen E, Wall D H, Wilson N G, Xavier J C
Alfred Wegener Institute, Hemholtz Centre for Polar and Marine Research, PO Box 120161, 27515 Bremerhaven, Germany.
Institut de Ciències del Mar-CSIC, Passeig Marítim de la Barceloneta, 37-49, Barcelona 08003, Spain.
Mar Genomics. 2018 Feb;37:1-17. doi: 10.1016/j.margen.2017.09.006. Epub 2017 Sep 30.
The biodiversity, ecosystem services and climate variability of the Antarctic continent and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaptation of the Scientific Committee on Antarctic Research, which focussed on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas and first steps in their implementation were clustered into eight themes. These ranged from scale problems, through risk maps, and organism/ecosystem responses to multiple environmental changes and evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in Antarctic research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of Antarctic and global ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind.
南极大陆和南大洋的生物多样性、生态系统服务以及气候变异性是整个地球系统的主要组成部分。与许多其他海洋和陆地生态系统相比,南极生态系统受物理环境的驱动更为强烈。因此,为了理解生态功能,跨学科研究在南极研究中尤为重要。本文提出的概念性研究基于南极研究科学委员会的“南极阈值——生态系统恢复力与适应”研究计划发起的一次研讨会,该研讨会聚焦于在南极识别和应用跨学科方法方面的挑战。新想法及其实施的初步步骤被归纳为八个主题。这些主题涵盖从尺度问题、风险地图,到生物体/生态系统对多种环境变化和进化过程的响应。跨越不同空间和时间尺度的尺度模型和数据被确定为一项首要挑战。弥合南极研究计划差距的方法包括多学科监测、将生物分子研究结果与模拟物理环境相联系,以及综合生态建模。先进跨学科方法的成果能够极大地增进我们对南极和全球生态系统功能、气候变化后果的了解,并有助于开展最终造福人类的全球评估。