Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India.
Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Parktown, 2193, South Africa.
Int J Pharm. 2017 Dec 20;534(1-2):1-13. doi: 10.1016/j.ijpharm.2017.09.071. Epub 2017 Sep 29.
The current study was aimed to prepare a molecular complex of erlotinib (ERL) with phospholipid (PC) for enhancement of solubility and thus bioavailability, therapeutic efficacy and reducing the toxicity of erlotinib. Phospholipid complex of drug was prepared by solvent evaporation method and characterized by differential scanning calorimetry (DSC), Fourier transform infra-red spectroscopy (FT-IR), proton and phosphorus nuclear magnetic resonance spectroscopy (H NMR and P NMR), powder X-ray diffraction (P-XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which all explained the interactions of two components, validating the complexation phenomenon. In silico study also supported the phase change and molecular interactions for the establishment of ERL-PC. Spherical shaped nanostructures with 183.37±28.61nm size, -19.52±6.94mV potential and 28.59±2.66% loading efficiency were formed following dispersion of ERL-PC in aqueous media. In vitro release study revealed the higher release of ERL-PC due to amorphization and solubilization of drug. Caco-2 cell uptake resulted in ∼2 fold higher uptake of ERL-PC than free drug. In vitro cell culture studies were performed using human pancreatic adenocarcinoma cell lines, which demonstrated the higher cytotoxicity and apoptosis in case of ERL-PC. In vivo pharmacokinetics also supported the in vitro observations and showed ∼1.7 fold higher bioavailability with ERL-PC than ERL. Finally, in vivo efficacy and toxicity studies explained the superiority of ERL-PC over the free drug. Based on the results, phospholipid complex appears to be a promising tool to enhance bioavailability, efficacy, cytotoxicity and safety of erlotinib.
本研究旨在制备厄洛替尼(ERL)与磷脂(PC)的分子复合物,以提高溶解度,从而提高生物利用度、治疗效果,并降低厄洛替尼的毒性。药物的磷脂复合物通过溶剂蒸发法制备,并通过差示扫描量热法(DSC)、傅里叶变换红外光谱(FT-IR)、质子和磷核磁共振波谱(H NMR 和 P NMR)、粉末 X 射线衍射(P-XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行了表征,所有这些都解释了两种成分的相互作用,验证了复合物的形成。计算研究也支持了 ERL-PC 的相变和分子相互作用。在水介质中分散 ERL-PC 后,形成了具有 183.37±28.61nm 尺寸、-19.52±6.94mV 电位和 28.59±2.66%载药效率的球形纳米结构。体外释放研究表明,由于药物的无定形化和增溶作用,ERL-PC 的释放更高。Caco-2 细胞摄取导致 ERL-PC 的摄取量比游离药物高约 2 倍。在体外细胞培养研究中,使用人胰腺腺癌细胞系进行了研究,结果表明 ERL-PC 具有更高的细胞毒性和细胞凋亡。体内药代动力学研究也支持了体外观察结果,并表明 ERL-PC 比 ERL 的生物利用度提高了约 1.7 倍。最后,体内功效和毒性研究解释了 ERL-PC 优于游离药物的原因。基于这些结果,磷脂复合物似乎是一种有前途的工具,可以提高厄洛替尼的生物利用度、疗效、细胞毒性和安全性。