Toropova Alla P, Toropov Andrey A
Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milano, Italy.
Mini Rev Med Chem. 2018 Feb 14;18(5):382-391. doi: 10.2174/1389557517666170927154931.
The applications of optimal molecular descriptors as a tool to predict endpoints related to medicinal chemistry are listed. The general scheme of building up of the optimal descriptors is represented in detail. Simplified molecular input-line entry system (SMILES) is being used to represent the molecular architecture. The optimal descriptor is the sum of correlation weights of molecular fragments extracted from SMILES. The numerical data on the correlation weights are calculated by the Monte Carlo method. The data should provide maximal correlation coefficient between experimental values of endpoint and corresponding values of the optimal descriptor. The scheme contains two phases: (i) selection of reliable parameters of the Monte Carlo optimization; and (ii) building up a model. The mechanistic interpretation for models based on the optimal descriptors is suggested. The interpretation is calculated on results of several runs of the Monte Carlo optimization. The domain of applicability for these models is defined according to the prevalence of molecular fragments in the training and calibration sets.
列出了最佳分子描述符作为预测与药物化学相关终点的工具的应用。详细介绍了构建最佳描述符的总体方案。简化分子输入线输入系统(SMILES)用于表示分子结构。最佳描述符是从SMILES中提取的分子片段的相关权重之和。相关权重的数值数据通过蒙特卡罗方法计算。这些数据应在终点实验值与最佳描述符的相应值之间提供最大相关系数。该方案包括两个阶段:(i)蒙特卡罗优化可靠参数的选择;(ii)建立模型。提出了基于最佳描述符的模型的机理解释。该解释是根据蒙特卡罗优化的几次运行结果计算得出的。这些模型的适用范围是根据训练集和校准集中分子片段的普遍性来定义的。