Suppr超能文献

作为构建预测性定量构效关系/定量结构活性关系工具的蒙特卡罗方法

The Monte Carlo Method as a Tool to Build up Predictive QSPR/QSAR.

作者信息

Toropov Andrey A, Toropova Alla P

机构信息

Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156 Milan, Italy.

出版信息

Curr Comput Aided Drug Des. 2020;16(3):197-206. doi: 10.2174/1573409915666190328123112.

Abstract

BACKGROUND

The Monte Carlo method has a wide application in various scientific researches. For the development of predictive models in a form of the quantitative structure-property / activity relationships (QSPRs/QSARs), the Monte Carlo approach also can be useful. The CORAL software provides the Monte Carlo calculations aimed to build up QSPR/QSAR models for different endpoints.

METHODS

Molecular descriptors are a mathematical function of so-called correlation weights of various molecular features. The numerical values of the correlation weights give the maximal value of a target function. The target function leads to a correlation between endpoint and optimal descriptor for the visible training set. The predictive potential of the model is estimated with the validation set, i.e. compounds that are not involved in the process of building up the model.

RESULTS

The approach gave quite good models for a large number of various physicochemical, biochemical, ecological, and medicinal endpoints. Bibliography and basic statistical characteristics of several CORAL models are collected in the present review. In addition, the extended version of the approach for more complex systems (nanomaterials and peptides), where behaviour of systems is defined by a group of conditions besides the molecular structure is demonstrated.

CONCLUSION

The Monte Carlo technique available via the CORAL software can be a useful and convenient tool for the QSPR/QSAR analysis.

摘要

背景

蒙特卡罗方法在各种科学研究中有着广泛的应用。对于以定量结构-性质/活性关系(QSPRs/QSARs)形式开发预测模型而言,蒙特卡罗方法也可能会有所帮助。CORAL软件提供了蒙特卡罗计算,旨在为不同的终点构建QSPR/QSAR模型。

方法

分子描述符是各种分子特征的所谓相关权重的数学函数。相关权重的数值给出目标函数的最大值。目标函数导致可见训练集中终点与最优描述符之间的相关性。模型的预测潜力通过验证集来估计,即不参与模型构建过程的化合物。

结果

该方法为大量不同的物理化学、生物化学、生态和医学终点给出了相当不错的模型。本综述收集了几个CORAL模型的参考文献和基本统计特征。此外,还展示了该方法针对更复杂系统(纳米材料和肽)的扩展版本,在这些系统中,除了分子结构外,系统的行为还由一组条件定义。

结论

通过CORAL软件可用的蒙特卡罗技术可以成为QSPR/QSAR分析的有用且便捷的工具。

相似文献

9
CORAL: Monte Carlo Method to Predict Endpoints for Medical Chemistry.CORAL:预测药物化学终点的蒙特卡罗方法
Mini Rev Med Chem. 2018 Feb 14;18(5):382-391. doi: 10.2174/1389557517666170927154931.
10
Prediction of retention characteristics of heterocyclic compounds.杂环化合物保留特性的预测。
Anal Bioanal Chem. 2015 Dec;407(30):9185-9. doi: 10.1007/s00216-015-9067-6. Epub 2015 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验