Suppr超能文献

β-内酰胺酶对舒巴坦的水解动力学及舒巴坦对β-内酰胺酶的抑制动力学。

Kinetics of Sulbactam Hydrolysis by β-Lactamases, and Kinetics of β-Lactamase Inhibition by Sulbactam.

机构信息

Entasis Therapeutics, Waltham, Massachusetts, USA

出版信息

Antimicrob Agents Chemother. 2017 Nov 22;61(12). doi: 10.1128/AAC.01612-17. Print 2017 Dec.

Abstract

Sulbactam is one of four β-lactamase inhibitors in current clinical use to counteract drug resistance caused by degradation of β-lactam antibiotics by these bacterial enzymes. As a β-lactam itself, sulbactam is susceptible to degradation by β-lactamases. I investigated the Michaelis-Menten kinetics of sulbactam hydrolysis by 14 β-lactamases, representing clinically widespread groups within all four Ambler classes, i.e., CTX-M-15, KPC-2, SHV-5, and TEM-1 for class A; IMP-1, NDM-1, and VIM-1 for class B; ADC-7, AmpC, and P99 for class C; and OXA-10, OXA-23, OXA-24, and OXA-48 for class D. All of the β-lactamases were able to hydrolyze sulbactam, although they varied widely in their kinetic constants for the reaction, even within each class. I also investigated the inactivation kinetics of the inhibition of these enzymes by sulbactam. The class A β-lactamases varied widely in their susceptibility to inhibition, the class C and D enzymes were very weakly inhibited, and the class B enzymes were essentially or completely unaffected. In addition, we measured the sulbactam turnover number, the sulbactam/enzyme molar ratio required for complete inhibition of each enzyme. Class C enzymes had the lowest turnover numbers, class A enzymes varied widely, and class D enzymes had very high turnover numbers. These results are valuable for understanding which β-lactamases ought to be well inhibited by sulbactam. Moreover, since sulbactam has intrinsic antibacterial activity against species pathogens, these results contribute to understanding β-lactamase-mediated sulbactam resistance in , especially due to the action of the widespread class D enzymes.

摘要

舒巴坦是目前临床使用的四种β-内酰胺酶抑制剂之一,用于抵抗这些细菌酶对β-内酰胺抗生素的降解所导致的药物耐药性。作为一种β-内酰胺,舒巴坦本身容易被β-内酰胺酶降解。我研究了 14 种β-内酰胺酶对舒巴坦水解的米氏动力学,这些酶代表了所有四个 Ambler 类别的临床广泛群体,即 CTX-M-15、KPC-2、SHV-5 和 TEM-1 为 A 类;IMP-1、NDM-1 和 VIM-1 为 B 类;ADC-7、AmpC 和 P99 为 C 类;以及 OXA-10、OXA-23、OXA-24 和 OXA-48 为 D 类。所有的β-内酰胺酶都能够水解舒巴坦,尽管它们在反应的动力学常数上差异很大,甚至在每个类别内也是如此。我还研究了这些酶被舒巴坦抑制的失活动力学。A 类β-内酰胺酶对抑制的敏感性差异很大,C 类和 D 类酶的抑制作用很弱,而 B 类酶基本上或完全不受影响。此外,我们测量了舒巴坦的周转数,即每个酶完全抑制所需的舒巴坦/酶摩尔比。C 类酶的周转数最低,A 类酶差异很大,D 类酶的周转数非常高。这些结果对于理解哪些β-内酰胺酶应该被舒巴坦很好地抑制是有价值的。此外,由于舒巴坦对 种病原体具有内在的抗菌活性,这些结果有助于理解β-内酰胺酶介导的舒巴坦耐药性,尤其是由于广泛存在的 D 类酶的作用。

相似文献

1
Kinetics of Sulbactam Hydrolysis by β-Lactamases, and Kinetics of β-Lactamase Inhibition by Sulbactam.
Antimicrob Agents Chemother. 2017 Nov 22;61(12). doi: 10.1128/AAC.01612-17. Print 2017 Dec.
3
Reversibility of Covalent, Broad-Spectrum Serine β-Lactamase Inhibition by the Diazabicyclooctenone ETX2514.
ACS Infect Dis. 2017 Nov 10;3(11):833-844. doi: 10.1021/acsinfecdis.7b00113. Epub 2017 Aug 28.
4
Activity of the β-Lactamase Inhibitor LN-1-255 against Carbapenem-Hydrolyzing Class D β-Lactamases from Acinetobacter baumannii.
Antimicrob Agents Chemother. 2017 Oct 24;61(11). doi: 10.1128/AAC.01172-17. Print 2017 Nov.
5
Activity of avibactam against Enterobacter cloacae producing an extended-spectrum class C β-lactamase enzyme.
J Antimicrob Chemother. 2014 Nov;69(11):2942-6. doi: 10.1093/jac/dku237. Epub 2014 Jun 30.
8
A kinetic study of NMC-A beta-lactamase, an Ambler class A carbapenemase also hydrolyzing cephamycins.
FEMS Microbiol Lett. 1996 Sep 15;143(1):29-33. doi: 10.1111/j.1574-6968.1996.tb08457.x.
10
Sulbactam-durlobactam: a β-lactam/β-lactamase inhibitor combination targeting .
Future Microbiol. 2024;19(7):563-576. doi: 10.2217/fmb-2023-0248. Epub 2024 Mar 1.

引用本文的文献

1
New β-Lactam/β-Lactamase Inhibitor Combination Antibiotics.
Pathogens. 2025 Mar 24;14(4):307. doi: 10.3390/pathogens14040307.
2
Sulbactam for carbapenem-resistant infections: a literature review.
JAC Antimicrob Resist. 2025 Apr 12;7(2):dlaf055. doi: 10.1093/jacamr/dlaf055. eCollection 2025 Apr.
3
Dynamic optimization elucidates higher-level pathogenicity strategies of .
Microlife. 2025 Mar 13;6:uqaf005. doi: 10.1093/femsml/uqaf005. eCollection 2025.
4
In vitro activity and resistance mechanisms of novel antimicrobial agents against metallo-β-lactamase producers.
Eur J Clin Microbiol Infect Dis. 2025 May;44(5):1041-1068. doi: 10.1007/s10096-025-05080-1. Epub 2025 Mar 10.
7
Treatment of infections caused by carbapenem-resistant .
Front Cell Infect Microbiol. 2024 Jul 18;14:1395260. doi: 10.3389/fcimb.2024.1395260. eCollection 2024.
9
Characterization of complex isolates and microbiological outcome for patients treated with sulbactam-durlobactam in a phase 3 trial (ATTACK).
Antimicrob Agents Chemother. 2024 May 2;68(5):e0169823. doi: 10.1128/aac.01698-23. Epub 2024 Apr 3.
10
Sulbactam-durlobactam: a β-lactam/β-lactamase inhibitor combination targeting .
Future Microbiol. 2024;19(7):563-576. doi: 10.2217/fmb-2023-0248. Epub 2024 Mar 1.

本文引用的文献

2
Antimicrobial activity of tigecycline and cefoperazone/sulbactam tested against 18,386 Gram-negative organisms from Europe and the Asia-Pacific region (2013-2014).
Diagn Microbiol Infect Dis. 2017 Jun;88(2):177-183. doi: 10.1016/j.diagmicrobio.2017.02.020. Epub 2017 Mar 6.
3
Efficacy of sulbactam for the treatment of Acinetobacter baumannii complex infection: A systematic review and meta-analysis.
J Infect Chemother. 2017 May;23(5):278-285. doi: 10.1016/j.jiac.2017.01.005. Epub 2017 Feb 13.
4
β-Lactams and β-Lactamase Inhibitors: An Overview.
Cold Spring Harb Perspect Med. 2016 Aug 1;6(8):a025247. doi: 10.1101/cshperspect.a025247.
5
β-Lactam Antibiotics Renaissance.
Antibiotics (Basel). 2014 May 9;3(2):193-215. doi: 10.3390/antibiotics3020193.
6
Kinetic Study of Laboratory Mutants of NDM-1 Metallo-β-Lactamase and the Importance of an Isoleucine at Position 35.
Antimicrob Agents Chemother. 2016 Mar 25;60(4):2366-72. doi: 10.1128/AAC.00531-15. Print 2016 Apr.
7
A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens.
Int J Antimicrob Agents. 2015 Nov;46(5):483-93. doi: 10.1016/j.ijantimicag.2015.08.011. Epub 2015 Sep 25.
8
Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii.
Antimicrob Agents Chemother. 2015 Mar;59(3):1680-9. doi: 10.1128/AAC.04808-14. Epub 2015 Jan 5.
9
OXA β-lactamases.
Clin Microbiol Rev. 2014 Apr;27(2):241-63. doi: 10.1128/CMR.00117-13.
10
Resistance surveillance program report for selected European nations (2011).
Diagn Microbiol Infect Dis. 2014 Apr;78(4):429-36. doi: 10.1016/j.diagmicrobio.2013.10.008. Epub 2013 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验