Suppr超能文献

NDM-1金属β-内酰胺酶实验室突变体的动力学研究及35位异亮氨酸的重要性

Kinetic Study of Laboratory Mutants of NDM-1 Metallo-β-Lactamase and the Importance of an Isoleucine at Position 35.

作者信息

Marcoccia Francesca, Bottoni Carlo, Sabatini Alessia, Colapietro Martina, Mercuri Paola Sandra, Galleni Moreno, Kerff Frédéric, Matagne André, Celenza Giuseppe, Amicosante Gianfranco, Perilli Mariagrazia

机构信息

Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell'Aquila, L'Aquila, Italy.

Laboratoire de Macromolécules Biologiques, Centre d'Ingénierie des Protéines, Université de Liège, Liège, Belgium.

出版信息

Antimicrob Agents Chemother. 2016 Mar 25;60(4):2366-72. doi: 10.1128/AAC.00531-15. Print 2016 Apr.

Abstract

Two laboratory mutants of NDM-1 were generated by replacing the isoleucine at position 35 with threonine and serine residues: the NDM-1(I35T)and NDM-1(I35S)enzymes. These mutants were well characterized, and their kinetic parameters were compared with those of the NDM-1 wild type. Thekcat,Km, andkcat/Kmvalues calculated for the two mutants were slightly different from those of the wild-type enzyme. Interestingly, thekcat/Kmof NDM-1(I35S)for loracarbef was about 14-fold higher than that of NDM-1. Far-UV circular dichroism (CD) spectra of NDM-1 and NDM-1(I35T)and NDM-1(I35S)enzymes suggest local structural rearrangements in the secondary structure with a marked reduction of α-helix content in the mutants.

摘要

通过将35位的异亮氨酸替换为苏氨酸和丝氨酸残基,生成了两种NDM-1实验室突变体:NDM-1(I35T)和NDM-1(I35S)酶。对这些突变体进行了充分表征,并将其动力学参数与NDM-1野生型的参数进行了比较。计算得出的两种突变体的kcat、Km和kcat/Km值与野生型酶的这些值略有不同。有趣的是,NDM-1(I35S)对氯碳头孢的kcat/Km比NDM-1高约14倍。NDM-1、NDM-1(I35T)和NDM-1(I35S)酶的远紫外圆二色(CD)光谱表明二级结构发生了局部结构重排,突变体中的α-螺旋含量显著降低。

相似文献

1
Kinetic Study of Laboratory Mutants of NDM-1 Metallo-β-Lactamase and the Importance of an Isoleucine at Position 35.
Antimicrob Agents Chemother. 2016 Mar 25;60(4):2366-72. doi: 10.1128/AAC.00531-15. Print 2016 Apr.
2
Role of Non-Active-Site Residue Trp-93 in the Function and Stability of New Delhi Metallo-β-Lactamase 1.
Antimicrob Agents Chemother. 2015 Nov 2;60(1):356-60. doi: 10.1128/AAC.01194-15. Print 2016 Jan.
3
E152A substitution drastically affects NDM-5 activity.
FEMS Microbiol Lett. 2017 Feb 1;364(3). doi: 10.1093/femsle/fnx008.
5
Biochemical characterization of New Delhi metallo-β-lactamase variants reveals differences in protein stability.
J Antimicrob Chemother. 2015 Feb;70(2):463-9. doi: 10.1093/jac/dku403. Epub 2014 Oct 16.
6
7
Non-active site mutation (Q123A) in New Delhi metallo-β-lactamase (NDM-1) enhanced its enzyme activity.
Int J Biol Macromol. 2018 Jun;112:1272-1277. doi: 10.1016/j.ijbiomac.2018.02.091. Epub 2018 Feb 15.
8
Analysis of the functional contributions of Asn233 in metallo-β-lactamase IMP-1.
Antimicrob Agents Chemother. 2011 Dec;55(12):5696-702. doi: 10.1128/AAC.00340-11. Epub 2011 Sep 6.
10
NDM-4 metallo-β-lactamase with increased carbapenemase activity from Escherichia coli.
Antimicrob Agents Chemother. 2012 Apr;56(4):2184-6. doi: 10.1128/AAC.05961-11. Epub 2012 Jan 17.

引用本文的文献

1
Involvement of the non-active site Residues in the Catalytic Activity of NDM-4 Metallo beta-lactamase.
Protein J. 2023 Aug;42(4):316-326. doi: 10.1007/s10930-023-10124-6. Epub 2023 May 12.
2
Direct Colorimetry of Imipenem Decomposition as a Novel Cost-Effective Method for Detecting Carbapenemase-Producing Enterobacteria.
Microbiol Spectr. 2022 Aug 31;10(4):e0093822. doi: 10.1128/spectrum.00938-22. Epub 2022 Jul 19.
4
Kinetic and Structural Characterization of the First B3 Metallo-β-Lactamase with an Active-Site Glutamic Acid.
Antimicrob Agents Chemother. 2021 Sep 17;65(10):e0093621. doi: 10.1128/AAC.00936-21. Epub 2021 Jul 26.
7
Active-Site Conformational Fluctuations Promote the Enzymatic Activity of NDM-1.
Antimicrob Agents Chemother. 2018 Oct 24;62(11). doi: 10.1128/AAC.01579-18. Print 2018 Nov.
8
A Kinetic Study of the Replacement by Site Saturation Mutagenesis of Residue 119 in NDM-1 Metallo-β-Lactamase.
Antimicrob Agents Chemother. 2018 Jul 27;62(8). doi: 10.1128/AAC.02541-17. Print 2018 Aug.
9
Structure-Based Virtual Screening for the Discovery of Novel Inhibitors of New Delhi Metallo-β-lactamase-1.
ACS Med Chem Lett. 2017 Nov 26;9(1):45-50. doi: 10.1021/acsmedchemlett.7b00428. eCollection 2018 Jan 11.
10
Exploring the role of L209 residue in the active site of NDM-1 a metallo-β-lactamase.
PLoS One. 2018 Jan 2;13(1):e0189686. doi: 10.1371/journal.pone.0189686. eCollection 2018.

本文引用的文献

1
Evolution of Metallo-β-lactamases: Trends Revealed by Natural Diversity and in vitro Evolution.
Antibiotics (Basel). 2014 Jul 1;3(3):285-316. doi: 10.3390/antibiotics3030285.
2
Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins.
J Am Chem Soc. 2014 Oct 22;136(42):14694-7. doi: 10.1021/ja508388e. Epub 2014 Oct 7.
3
Genome analysis of NDM-1 producing Morganella morganii clinical isolate.
Expert Rev Anti Infect Ther. 2014 Oct;12(10):1297-305. doi: 10.1586/14787210.2014.944504. Epub 2014 Aug 1.
4
Molecular epidemiology of NDM-1-producing Enterobacteriaceae and Acinetobacter baumannii isolates from Pakistan.
Antimicrob Agents Chemother. 2014 Sep;58(9):5589-93. doi: 10.1128/AAC.02425-14. Epub 2014 Jun 30.
6
New Delhi Metallo-beta-lactamase around the world: an eReview using Google Maps.
Euro Surveill. 2014 May 22;19(20):20809. doi: 10.2807/1560-7917.es2014.19.20.20809.
8
NDM-1, the ultimate promiscuous enzyme: substrate recognition and catalytic mechanism.
FASEB J. 2013 May;27(5):1917-27. doi: 10.1096/fj.12-224014. Epub 2013 Jan 30.
9
Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance.
J Med Microbiol. 2013 Apr;62(Pt 4):499-513. doi: 10.1099/jmm.0.052555-0. Epub 2013 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验