Suppr超能文献

通过PTBP1(多嘧啶序列结合蛋白)和丙酮酸激酶M2鉴定MicroRNA-124作为肺动脉高压中内皮细胞糖酵解增强的主要调节因子。

Identification of MicroRNA-124 as a Major Regulator of Enhanced Endothelial Cell Glycolysis in Pulmonary Arterial Hypertension via PTBP1 (Polypyrimidine Tract Binding Protein) and Pyruvate Kinase M2.

作者信息

Caruso Paola, Dunmore Benjamin J, Schlosser Kenny, Schoors Sandra, Dos Santos Claudia, Perez-Iratxeta Carol, Lavoie Jessie R, Zhang Hui, Long Lu, Flockton Amanda R, Frid Maria G, Upton Paul D, D'Alessandro Angelo, Hadinnapola Charaka, Kiskin Fedir N, Taha Mohamad, Hurst Liam A, Ormiston Mark L, Hata Akiko, Stenmark Kurt R, Carmeliet Peter, Stewart Duncan J, Morrell Nicholas W

机构信息

Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., B.J.D., L.L., P.D.U., C.H., F.N.K., L.A.H.., N.W.M.)

Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., B.J.D., L.L., P.D.U., C.H., F.N.K., L.A.H.., N.W.M.).

出版信息

Circulation. 2017 Dec 19;136(25):2451-2467. doi: 10.1161/CIRCULATIONAHA.117.028034. Epub 2017 Sep 26.

Abstract

BACKGROUND

Pulmonary arterial hypertension (PAH) is characterized by abnormal growth and enhanced glycolysis of pulmonary artery endothelial cells. However, the mechanisms underlying alterations in energy production have not been identified.

METHODS

Here, we examined the miRNA and proteomic profiles of blood outgrowth endothelial cells (BOECs) from patients with heritable PAH caused by mutations in the bone morphogenetic protein receptor type 2 () gene and patients with idiopathic PAH to determine mechanisms underlying abnormal endothelial glycolysis. We hypothesized that in BOECs from patients with PAH, the downregulation of microRNA-124 (miR-124), determined with a tiered systems biology approach, is responsible for increased expression of the splicing factor (polypyrimidine tract binding protein), resulting in alternative splicing of pyruvate kinase muscle isoforms 1 and 2 (PKM1 and 2) and consequently increased PKM2 expression. We questioned whether this alternative regulation plays a critical role in the hyperglycolytic phenotype of PAH endothelial cells.

RESULTS

Heritable PAH and idiopathic PAH BOECs recapitulated the metabolic abnormalities observed in pulmonary artery endothelial cells from patients with idiopathic PAH, confirming a switch from oxidative phosphorylation to aerobic glycolysis. Overexpression of miR-124 or siRNA silencing of restored normal proliferation and glycolysis in heritable PAH BOECs, corrected the dysregulation of glycolytic genes and lactate production, and partially restored mitochondrial respiration. knockdown in control BOECs reduced the expression of miR-124, increased , and enhanced glycolysis. Moreover, we observed reduced miR-124, increased and expression, and significant dysregulation of glycolytic genes in the rat SUGEN-hypoxia model of severe PAH, characterized by reduced expression and endothelial hyperproliferation, supporting the relevance of this mechanism in vivo.

CONCLUSIONS

Pulmonary vascular and circulating progenitor endothelial cells isolated from patients with PAH demonstrate downregulation of miR-124, leading to the metabolic and proliferative abnormalities in PAH ECs via PTPB1 and PKM1/PKM2. Therefore, the manipulation of this miRNA or its targets could represent a novel therapeutic approach for the treatment of PAH.

摘要

背景

肺动脉高压(PAH)的特征是肺动脉内皮细胞生长异常和糖酵解增强。然而,能量产生改变的潜在机制尚未明确。

方法

在此,我们检测了由骨形态发生蛋白受体2(BMPR2)基因突变引起的遗传性PAH患者和特发性PAH患者的血源内皮细胞(BOECs)的miRNA和蛋白质组学谱,以确定内皮糖酵解异常的潜在机制。我们假设,在PAH患者的BOECs中,通过分层系统生物学方法确定的微小RNA-124(miR-124)下调,导致剪接因子(多嘧啶序列结合蛋白,PTBP1)表达增加,从而导致丙酮酸激酶肌肉亚型1和2(PKM1和PKM2)的可变剪接,进而导致PKM2表达增加。我们质疑这种可变调控是否在PAH内皮细胞的高糖酵解表型中起关键作用。

结果

遗传性PAH和特发性PAH的BOECs重现了特发性PAH患者肺动脉内皮细胞中观察到的代谢异常,证实了从氧化磷酸化向有氧糖酵解的转变。miR-124的过表达或PTBP1的siRNA沉默恢复了遗传性PAH的BOECs的正常增殖和糖酵解,纠正了糖酵解基因的失调和乳酸产生,并部分恢复了线粒体呼吸。对照BOECs中的PTBP1敲低降低了miR-124的表达,增加了PTBP1,并增强了糖酵解。此外,我们在以PTBP1表达降低和内皮细胞过度增殖为特征的严重PAH大鼠SUGEN-缺氧模型中观察到miR-124降低、PTBP1和PKM2表达增加以及糖酵解基因的显著失调,支持了该机制在体内的相关性。

结论

从PAH患者分离的肺血管和循环祖内皮细胞显示miR-124下调,通过PTBP1和PKM1/PKM2导致PAH内皮细胞的代谢和增殖异常。因此,操纵这种miRNA或其靶点可能代表一种治疗PAH的新型治疗方法。

相似文献

5
Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension.
Arterioscler Thromb Vasc Biol. 2013 Jan;33(1):34-42. doi: 10.1161/ATVBAHA.112.300121. Epub 2012 Nov 8.
7
Raf/ERK drives the proliferative and invasive phenotype of BMPR2-silenced pulmonary artery endothelial cells.
Am J Physiol Lung Cell Mol Physiol. 2016 Jan 15;310(2):L187-201. doi: 10.1152/ajplung.00303.2015. Epub 2015 Nov 20.
8
Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA.
Cancer Res. 2010 Nov 15;70(22):8977-80. doi: 10.1158/0008-5472.CAN-10-2513. Epub 2010 Oct 26.
10
PTBP1 knockdown overcomes the resistance to vincristine and oxaliplatin in drug-resistant colon cancer cells through regulation of glycolysis.
Biomed Pharmacother. 2018 Dec;108:194-200. doi: 10.1016/j.biopha.2018.09.031. Epub 2018 Sep 13.

引用本文的文献

1
Advances in the therapeutic applications of dichloroacetate as a metabolic regulator: A review.
Medicine (Baltimore). 2025 Sep 5;104(36):e44295. doi: 10.1097/MD.0000000000044295.
3
CD31 regulates metabolic switch in Treg migration attenuates rheumatoid arthritis.
Clin Transl Med. 2025 Aug;15(8):e70441. doi: 10.1002/ctm2.70441.
4
RNA splicing: Novel star in pulmonary diseases with a treatment perspective.
Acta Pharm Sin B. 2025 May;15(5):2301-2322. doi: 10.1016/j.apsb.2025.03.023. Epub 2025 Mar 13.
5
Roles of Pyruvate Kinase M2 in Pulmonary Diseases: What Do We Know So Far?
Lung. 2025 Jun 4;203(1):67. doi: 10.1007/s00408-025-00821-7.
8
miR-124/PTBP1/PKM axis modulates pulmonary artery endothelial metabolism in a pulmonary thromboembolism rat model.
J Thorac Dis. 2025 Apr 30;17(4):2217-2226. doi: 10.21037/jtd-24-1806. Epub 2025 Apr 27.
9
Vascular Remodeling: The Multicellular Mechanisms of Pulmonary Hypertension.
Int J Mol Sci. 2025 Apr 30;26(9):4265. doi: 10.3390/ijms26094265.
10
Endothelial cell metabolism in cardiovascular physiology and disease.
Nat Rev Cardiol. 2025 May 9. doi: 10.1038/s41569-025-01162-x.

本文引用的文献

2
Red blood cell metabolic responses to refrigerated storage, rejuvenation, and frozen storage.
Transfusion. 2017 Apr;57(4):1019-1030. doi: 10.1111/trf.14034. Epub 2017 Mar 10.
3
PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation.
Nat Commun. 2016 Oct 25;7:13280. doi: 10.1038/ncomms13280.
5
Constitutive Reprogramming of Fibroblast Mitochondrial Metabolism in Pulmonary Hypertension.
Am J Respir Cell Mol Biol. 2016 Jul;55(1):47-57. doi: 10.1165/rcmb.2015-0142OC.
6
Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension.
Nat Med. 2015 Jul;21(7):777-85. doi: 10.1038/nm.3877. Epub 2015 Jun 15.
8
MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment.
J Am Soc Hypertens. 2015 Mar;9(3):221-34. doi: 10.1016/j.jash.2014.12.011. Epub 2014 Dec 23.
9
MicroRNA Signature and Cardiovascular Dysfunction.
J Cardiovasc Pharmacol. 2015 May;65(5):419-29. doi: 10.1097/FJC.0000000000000178.
10
Endothelial cell metabolism: parallels and divergences with cancer cell metabolism.
Cancer Metab. 2014 Sep 15;2:19. doi: 10.1186/2049-3002-2-19. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验