Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609.
Department of Physics, Worcester Polytechnic Institute, Worcester, Massachusetts 01609.
Plant Physiol. 2018 Jan;176(1):352-363. doi: 10.1104/pp.17.00753. Epub 2017 Oct 2.
F-actin has been shown to be essential for tip growth in an array of plant models, including One hypothesis is that diffusion can transport secretory vesicles, while actin plays a regulatory role during secretion. Alternatively, it is possible that actin-based transport is necessary to overcome vesicle transport limitations to sustain secretion. Therefore, a quantitative analysis of diffusion, secretion kinetics, and cell geometry is necessary to clarify the role of actin in polarized growth. Using fluorescence recovery after photobleaching analysis, we first show that secretory vesicles move toward and accumulate at the tip in an actin-dependent manner. We then depolymerized F-actin to decouple vesicle diffusion from actin-mediated transport and measured the diffusion coefficient and concentration of vesicles. Using these values, we constructed a theoretical diffusion-based model for growth, demonstrating that with fast-enough vesicle fusion kinetics, diffusion could support normal cell growth rates. We further refined our model to explore how experimentally extrapolated vesicle fusion kinetics and the size of the secretion zone limit diffusion-based growth. This model predicts that diffusion-mediated growth is dependent on the size of the region of exocytosis at the tip and that diffusion-based growth would be significantly slower than normal cell growth. To further explore the size of the secretion zone, we used a cell wall degradation enzyme cocktail and determined that the secretion zone is smaller than 6 μm in diameter at the tip. Taken together, our results highlight the requirement for active transport in polarized growth and provide important insight into vesicle secretion during tip growth.
F-肌动蛋白已被证明对于一系列植物模型中的顶端生长是必不可少的,包括 一种假设是扩散可以运输分泌小泡,而肌动蛋白在分泌过程中起调节作用。或者,肌动蛋白介导的运输可能是必需的,以克服囊泡运输的限制,从而维持分泌。因此,有必要对扩散、分泌动力学和细胞几何形状进行定量分析,以阐明肌动蛋白在极化生长中的作用。我们首先使用光漂白后荧光恢复分析表明,分泌小泡以依赖于肌动蛋白的方式向顶端移动并在该处积累。然后,我们将 F-肌动蛋白解聚以将囊泡扩散与肌动蛋白介导的运输分离,并测量囊泡的扩散系数和浓度。利用这些值,我们构建了一个基于扩散的理论生长模型,表明融合动力学足够快时,扩散可以支持正常的细胞生长速率。我们进一步完善了我们的模型,以探讨如何根据实验外推的囊泡融合动力学和分泌区的大小来限制基于扩散的生长。该模型预测,扩散介导的生长取决于顶端出芽区的大小,并且扩散介导的生长将比正常细胞生长慢得多。为了进一步探索分泌区的大小,我们使用了一种细胞壁降解酶混合物,并确定在顶端分泌区的直径小于 6 微米。总之,我们的结果强调了在极化生长中主动运输的必要性,并为顶端生长过程中的囊泡分泌提供了重要的见解。