Suppr超能文献

由于细胞骨架不稳定,高血糖导致中性粒细胞微粒生成和炎性小体激活。

Neutrophil microparticle production and inflammasome activation by hyperglycemia due to cytoskeletal instability.

作者信息

Thom Stephen R, Bhopale Veena M, Yu Kevin, Huang Weiliang, Kane Maureen A, Margolis David J

机构信息

From the Department of Emergency Medicine, School of Medicine, and

From the Department of Emergency Medicine, School of Medicine, and.

出版信息

J Biol Chem. 2017 Nov 3;292(44):18312-18324. doi: 10.1074/jbc.M117.802629. Epub 2017 Sep 25.

Abstract

Microparticles are lipid bilayer-enclosed vesicles produced by cells under oxidative stress. MP production is elevated in patients with diabetes, but the underlying cellular mechanisms are poorly understood. We hypothesized that raising glucose above the physiological level of 5.5 mm would stimulate leukocytes to produce MPs and activate the nucleotide-binding domain, leucine-rich repeat pyrin domain-containing 3 (NLRP3) inflammasome. We found that when incubated in buffer with up to 20 mm glucose, human and murine neutrophils, but not monocytes, generate progressively more MPs with high interleukin (IL)-1β content. Enhanced MP production required generation of reactive chemical species by mitochondria, NADPH oxidase, and type 2 nitric-oxide synthase (NOS-2) and resulted in -nitrosylation of actin. Depleting cells of capon (C-terminal PDZ ligand of neuronal nitric-oxide synthase protein), apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain (ASC), or pro-IL-1β prevented the hyperglycemia-induced enhancement of reactive species production, MP generation, and IL-1β synthesis. Additional components required for these responses included inositol 1,3,5-triphosphate receptors, PKC, and enhancement of filamentous-actin turnover. Numerous proteins become localized to short filamentous actin in response to -nitrosylation, including vasodilator-stimulated phosphoprotein, focal adhesion kinase, the membrane phospholipid translocation enzymes flippase and floppase, capon, NLRP3, and ASC. We conclude that an interdependent oxidative stress response to hyperglycemia perturbs neutrophil cytoskeletal stability leading to MP production and IL-1β synthesis.

摘要

微粒是细胞在氧化应激下产生的脂质双层包裹的囊泡。糖尿病患者的微粒生成增加,但潜在的细胞机制尚不清楚。我们推测,将葡萄糖浓度提高到生理水平5.5 mmol/L以上会刺激白细胞产生微粒,并激活含核苷酸结合域、富含亮氨酸重复序列和吡啉结构域的3(NLRP3)炎性小体。我们发现,当在含有高达20 mmol/L葡萄糖的缓冲液中孵育时,人和小鼠的中性粒细胞(而非单核细胞)会产生越来越多的含高白细胞介素(IL)-1β的微粒。增强的微粒生成需要线粒体、NADPH氧化酶和2型一氧化氮合酶(NOS-2)产生活性化学物质,并导致肌动蛋白的亚硝基化。去除神经元型一氧化氮合酶蛋白的C末端PDZ配体(卡波宁)、含C末端半胱天冬酶招募结构域的凋亡相关斑点样蛋白(ASC)或前IL-1β可防止高血糖诱导的活性物质生成、微粒生成和IL-1β合成增强。这些反应所需的其他成分包括肌醇1,3,5-三磷酸受体、蛋白激酶C和丝状肌动蛋白周转的增强。许多蛋白质响应亚硝基化而定位到短丝状肌动蛋白上,包括血管舒张刺激磷蛋白、粘着斑激酶、膜磷脂转位酶翻转酶和转位酶、卡波宁、NLRP3和ASC。我们得出结论,对高血糖的相互依赖的氧化应激反应扰乱了中性粒细胞的细胞骨架稳定性,导致微粒生成和IL-1β合成。

相似文献

1
Neutrophil microparticle production and inflammasome activation by hyperglycemia due to cytoskeletal instability.
J Biol Chem. 2017 Nov 3;292(44):18312-18324. doi: 10.1074/jbc.M117.802629. Epub 2017 Sep 25.
2
Increased carbon dioxide levels stimulate neutrophils to produce microparticles and activate the nucleotide-binding domain-like receptor 3 inflammasome.
Free Radic Biol Med. 2017 May;106:406-416. doi: 10.1016/j.freeradbiomed.2017.03.005. Epub 2017 Mar 10.
5
Neutrophils generate microparticles during exposure to inert gases due to cytoskeletal oxidative stress.
J Biol Chem. 2014 Jul 4;289(27):18831-45. doi: 10.1074/jbc.M113.543702. Epub 2014 May 27.
9
Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm.
Arterioscler Thromb Vasc Biol. 2015 Jan;35(1):127-36. doi: 10.1161/ATVBAHA.114.303763. Epub 2014 Nov 6.

引用本文的文献

1
Review of the mechanism of infection induced cerebral small vessel disease.
Front Immunol. 2025 May 26;16:1594891. doi: 10.3389/fimmu.2025.1594891. eCollection 2025.
2
Mechanotransduction in subchondral bone microenvironment and targeted interventions for osteoarthritis.
Mechanobiol Med. 2024 Feb 5;2(2):100043. doi: 10.1016/j.mbm.2024.100043. eCollection 2024 Jun.
3
Inflammatory responses to acute carbon monoxide poisoning and the role of plasma gelsolin.
Sci Adv. 2025 Feb 7;11(6):eado9751. doi: 10.1126/sciadv.ado9751.
6
Cell culture-derived extracellular vesicles: Considerations for reporting cell culturing parameters.
J Extracell Biol. 2023 Oct 16;2(10):e115. doi: 10.1002/jex2.115. eCollection 2023 Oct.
7
An Improved Clinical and Genetics-Based Prediction Model for Diabetic Foot Ulcer Healing.
Adv Wound Care (New Rochelle). 2024 Jun;13(6):281-290. doi: 10.1089/wound.2023.0194. Epub 2024 Mar 5.
8
Extracellular Vesicles for Drug Delivery in Cancer Treatment.
Biol Proced Online. 2023 Nov 9;25(1):28. doi: 10.1186/s12575-023-00220-3.
9
Recent progress in bone-repair strategies in diabetic conditions.
Mater Today Bio. 2023 Oct 20;23:100835. doi: 10.1016/j.mtbio.2023.100835. eCollection 2023 Dec.
10
Oxygen Variations-Insights into Hypoxia, Hyperoxia and Hyperbaric Hyperoxia-Is the Dose the Clue?
Int J Mol Sci. 2023 Aug 30;24(17):13472. doi: 10.3390/ijms241713472.

本文引用的文献

2
Increased carbon dioxide levels stimulate neutrophils to produce microparticles and activate the nucleotide-binding domain-like receptor 3 inflammasome.
Free Radic Biol Med. 2017 May;106:406-416. doi: 10.1016/j.freeradbiomed.2017.03.005. Epub 2017 Mar 10.
3
Neutrophil Microparticles Deliver Active Myeloperoxidase to Injured Mucosa To Inhibit Epithelial Wound Healing.
J Immunol. 2017 Apr 1;198(7):2886-2897. doi: 10.4049/jimmunol.1601810. Epub 2017 Feb 27.
7
Cell-Derived Microparticles in Patients with Type 2 Diabetes Mellitus: a Systematic Review and Meta-Analysis.
Cell Physiol Biochem. 2016;39(6):2439-2450. doi: 10.1159/000452512. Epub 2016 Nov 11.
8
Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy.
Pharmacol Res. 2016 Dec;114:251-264. doi: 10.1016/j.phrs.2016.11.004. Epub 2016 Nov 5.
9
Macrophage Foam Cell-Derived Extracellular Vesicles Promote Vascular Smooth Muscle Cell Migration and Adhesion.
J Am Heart Assoc. 2016 Oct 17;5(10):e004099. doi: 10.1161/JAHA.116.004099.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验