Thom Stephen R, Bhopale Veena M, Yu Kevin, Huang Weiliang, Kane Maureen A, Margolis David J
From the Department of Emergency Medicine, School of Medicine, and
From the Department of Emergency Medicine, School of Medicine, and.
J Biol Chem. 2017 Nov 3;292(44):18312-18324. doi: 10.1074/jbc.M117.802629. Epub 2017 Sep 25.
Microparticles are lipid bilayer-enclosed vesicles produced by cells under oxidative stress. MP production is elevated in patients with diabetes, but the underlying cellular mechanisms are poorly understood. We hypothesized that raising glucose above the physiological level of 5.5 mm would stimulate leukocytes to produce MPs and activate the nucleotide-binding domain, leucine-rich repeat pyrin domain-containing 3 (NLRP3) inflammasome. We found that when incubated in buffer with up to 20 mm glucose, human and murine neutrophils, but not monocytes, generate progressively more MPs with high interleukin (IL)-1β content. Enhanced MP production required generation of reactive chemical species by mitochondria, NADPH oxidase, and type 2 nitric-oxide synthase (NOS-2) and resulted in -nitrosylation of actin. Depleting cells of capon (C-terminal PDZ ligand of neuronal nitric-oxide synthase protein), apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain (ASC), or pro-IL-1β prevented the hyperglycemia-induced enhancement of reactive species production, MP generation, and IL-1β synthesis. Additional components required for these responses included inositol 1,3,5-triphosphate receptors, PKC, and enhancement of filamentous-actin turnover. Numerous proteins become localized to short filamentous actin in response to -nitrosylation, including vasodilator-stimulated phosphoprotein, focal adhesion kinase, the membrane phospholipid translocation enzymes flippase and floppase, capon, NLRP3, and ASC. We conclude that an interdependent oxidative stress response to hyperglycemia perturbs neutrophil cytoskeletal stability leading to MP production and IL-1β synthesis.
微粒是细胞在氧化应激下产生的脂质双层包裹的囊泡。糖尿病患者的微粒生成增加,但潜在的细胞机制尚不清楚。我们推测,将葡萄糖浓度提高到生理水平5.5 mmol/L以上会刺激白细胞产生微粒,并激活含核苷酸结合域、富含亮氨酸重复序列和吡啉结构域的3(NLRP3)炎性小体。我们发现,当在含有高达20 mmol/L葡萄糖的缓冲液中孵育时,人和小鼠的中性粒细胞(而非单核细胞)会产生越来越多的含高白细胞介素(IL)-1β的微粒。增强的微粒生成需要线粒体、NADPH氧化酶和2型一氧化氮合酶(NOS-2)产生活性化学物质,并导致肌动蛋白的亚硝基化。去除神经元型一氧化氮合酶蛋白的C末端PDZ配体(卡波宁)、含C末端半胱天冬酶招募结构域的凋亡相关斑点样蛋白(ASC)或前IL-1β可防止高血糖诱导的活性物质生成、微粒生成和IL-1β合成增强。这些反应所需的其他成分包括肌醇1,3,5-三磷酸受体、蛋白激酶C和丝状肌动蛋白周转的增强。许多蛋白质响应亚硝基化而定位到短丝状肌动蛋白上,包括血管舒张刺激磷蛋白、粘着斑激酶、膜磷脂转位酶翻转酶和转位酶、卡波宁、NLRP3和ASC。我们得出结论,对高血糖的相互依赖的氧化应激反应扰乱了中性粒细胞的细胞骨架稳定性,导致微粒生成和IL-1β合成。