Chua Ngee Kiat, Howe Vicky, Jatana Nidhi, Thukral Lipi, Brown Andrew J
School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi 110 020, India.
J Biol Chem. 2017 Dec 8;292(49):19959-19973. doi: 10.1074/jbc.M117.794230. Epub 2017 Sep 27.
Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans.
内质网(ER)中的胆固醇生物合成受到多种机制的严格控制,以调节细胞内胆固醇水平。角鲨烯单加氧酶(SM)是胆固醇生物合成中的第二个限速酶,其在转录和翻译后水平均受到调控。当胆固醇过量时,SM会经历胆固醇依赖性蛋白酶体降解。SM的前100个氨基酸(称为SM N100)对于这种降解过程是必需的,并且代表了迄今为止鉴定出的最短的胆固醇调节降解子。然而,这个降解子的基本内在特征仍然未知。在本研究中,我们进行了一系列缺失、点突变和结构域交换实验,以确定SM胆固醇介导的周转所需的一个12个残基的区域(第62位谷氨酰胺至第73位亮氨酸)。分子动力学和圆二色性揭示了这个12个残基区域内存在一个两亲性螺旋。此外,胆固醇调节中70%的变化取决于该区域的疏水性。值得注意的是,最早已知的酵母Doa10降解子Deg1也包含一个两亲性螺旋,并且与SM N100具有42%的氨基酸相似性。基于Deg1中的关键残基,将SM的苯丙氨酸-35/丝氨酸-37/亮氨酸-65/异亮氨酸-69突变为丙氨酸,减弱了SM胆固醇介导的周转。综上所述,我们的结果支持了一个模型,即SM N100中的两亲性螺旋根据胆固醇水平可逆地附着在内质网膜上;当胆固醇过量时,螺旋被弹出并解开,暴露出一个疏水区域,该区域随后作为降解信号。我们的发现为关键胆固醇合成酶的调节提供了新的见解,突出了从酵母到人类关键降解子特征的保守性。