Suppr超能文献

Physical and computer-based modeling in internal temperature reconstruction by the method of passive acoustic thermometry.

作者信息

Anosov A A, Subochev P V, Mansfeld A D, Sharakshane A A

机构信息

Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia; Kotel'nikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia.

Federal Research Center, The Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul'yanov Street, 603950 Nizhny Novgorod, Russia.

出版信息

Ultrasonics. 2018 Jan;82:336-344. doi: 10.1016/j.ultras.2017.09.015. Epub 2017 Sep 22.

Abstract

The purpose of this work was to investigate experimentally the capacity of passive acoustic thermometry (PAT) for the reconstruction of 1D, time-variable distributions of the internal temperature. Because in the PAT a noise signal is measured, a considerable integration time (about one minute) is required to attain an acceptable error level (0.5-1K). To optimize the time, an algorithm was proposed to take account of the fact that the temperature satisfied the heat equation. The problem was reduced to that of determining two parameters (initial temperature and thermal diffusivity) of the object under study. The desired parameters were considered constant and were not determined anew after each measurement; instead, their values were refined using all the previous measurements. The proposed algorithm was tested experimentally (where the temperature was reconstructed in a model object, a slab of polytetrafluoroethylene) and investigated by means of computer modeling. The duration of one measurement was about 5.5s. As a result, an error of the temperature reconstruction of about 0.5K, acceptable for medical applications, was attained after 30-60s (depending on the depth) from the beginning of the measurements. After that, temperature distributions can be reconstructed after each measurement without loss of the reconstruction accuracy. The proposed method can be used to control the temperature under a local hyperthermia, lasting 1 min and more, of the human body.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验