French National Institute of Health and Medical Research (INSERM), Unité Mixte de Recherche Scientifique (UMRS)_970, Paris Cardiovascular Research Center, France.
Université Paris Descartes, Sorbonne Paris Cité, France.
Endocr Rev. 2017 Dec 1;38(6):516-537. doi: 10.1210/er.2017-00189.
Aldosterone and cortisol, the main mineralocorticoid and glucocorticoid hormones in humans, are produced in the adrenal cortex, which is composed of three concentric zones with specific functional characteristics. Adrenocortical adenomas (ACAs) can lead to the autonomous secretion of aldosterone responsible for primary aldosteronism, the most frequent form of secondary arterial hypertension. In the case of cortisol production, ACAs lead to overt or subclinical Cushing syndrome. Genetic analysis driven by next-generation sequencing technology has enabled the discovery, during the past 7 years, of the genetic causes of a large subset of ACAs. In particular, somatic mutations in genes regulating intracellular ionic homeostasis and membrane potential have been identified in aldosterone-producing adenomas. These mutations all promote increased intracellular calcium concentrations, with activation of calcium signaling, the main trigger for aldosterone production. In cortisol-producing adenomas, recurrent somatic mutations in PRKACA (coding for the cyclic adenosine monophosphate-dependent protein kinase catalytic subunit α) affect cyclic adenosine monophosphate-dependent protein kinase A signaling, leading to activation of cortisol biosynthesis. In addition to these specific pathways, the Wnt/β-catenin pathway appears to play an important role in adrenal tumorigenesis, because β-catenin mutations have been identified in both aldosterone- and cortisol-producing adenomas. This, together with different intermediate states of aldosterone and cortisol cosecretion, raises the possibility that the two conditions share a certain degree of genetic susceptibility. Alternatively, different hits might be responsible for the diseases, with one hit leading to adrenocortical cell proliferation and nodule formation and the second specifying the hormonal secretory pattern.
醛固酮和皮质醇是人体内主要的盐皮质激素和糖皮质激素,它们在肾上腺皮质中产生,肾上腺皮质由具有特定功能特征的三个同心区组成。肾上腺皮质腺瘤 (ACAs) 可导致自主分泌醛固酮,导致原发性醛固酮增多症,这是继发性动脉高血压最常见的形式。在皮质醇产生的情况下,ACAs 导致显性或亚临床库欣综合征。下一代测序技术驱动的基因分析在过去 7 年中发现了很大一部分 ACAs 的遗传原因。特别是,在产生醛固酮的腺瘤中已经鉴定出调节细胞内离子稳态和膜电位的基因的体细胞突变。这些突变都促进了细胞内钙浓度的增加,激活了钙信号,这是醛固酮产生的主要触发因素。在产生皮质醇的腺瘤中,PRKACA(编码环腺苷酸依赖性蛋白激酶催化亚单位α)中的反复体细胞突变影响环腺苷酸依赖性蛋白激酶 A 信号,导致皮质醇生物合成的激活。除了这些特定途径外,Wnt/β-连环蛋白途径似乎在肾上腺肿瘤发生中起重要作用,因为在产生醛固酮和皮质醇的腺瘤中都鉴定出了β-连环蛋白突变。这与醛固酮和皮质醇共同分泌的不同中间状态一起,提出了两种情况可能具有一定遗传易感性的可能性。或者,不同的打击可能导致疾病,一个打击导致肾上腺皮质细胞增殖和结节形成,第二个打击指定激素分泌模式。