Suppr超能文献

新型多糖与半乳糖凝集素-3 N 端尾部的结合可能受到脯氨酸异构化的调节。

Novel polysaccharide binding to the N-terminal tail of galectin-3 is likely modulated by proline isomerization.

机构信息

Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA.

School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China.

出版信息

Glycobiology. 2017 Nov 1;27(11):1038-1051. doi: 10.1093/glycob/cwx071.

Abstract

Interactions between galectins and polysaccharides are crucial to many biological processes, and yet these are some of the least understood, usually being limited to studies with small saccharides and short oligosaccharides. The present study is focused on human galectin-3 (Gal-3) interactions with a 60 kDa rhamnogalacturonan RG-I-4 that we use as a model to garner information as to how galectins interact with large polysaccharides, as well as to develop this agent as a therapeutic against human disease. Gal-3 is unique among galectins, because as the only chimera-type, it has a long N-terminal tail (NT) that has long puzzled investigators due to its dynamic, disordered nature and presence of numerous prolines. Here, we use 15N-1H heteronuclear single quantum coherence NMR spectroscopy to demonstrate that multiple sites on RG-I-4 provide epitopes for binding to three sites on 15N-labeled Gal-3, two within its carbohydrate recognition domain (CRD) and one at a novel site within the NT encompassing the first 40 residues that are highly conserved among all species of Gal-3. Moreover, strong binding of RG-I-4 to the Gal-3 NT occurs on a very slow time scale, suggesting that it may be mediated by cis-trans proline isomerization, a well-recognized modulator of many biological activities. The NT binding epitope within RG-I-4 appears to reside primarily in the side chains of the polysaccharide, some of which are galactans. Our results provide new insight into the role of the NT in Gal-3 function.

摘要

半乳糖凝集素与多糖之间的相互作用对许多生物过程至关重要,但这些相互作用是了解最少的,通常仅限于对小糖和短寡糖的研究。本研究集中于人半乳糖凝集素-3(Gal-3)与 60 kDa 鼠李半乳糖醛酸聚糖 RG-I-4 的相互作用,我们将其用作模型,以了解半乳糖凝集素如何与大型多糖相互作用,并将该试剂开发为治疗人类疾病的药物。Gal-3 在半乳糖凝集素中是独一无二的,因为它是唯一的嵌合型,其具有长的 N 端尾部(NT),由于其动态、无序的性质和存在大量脯氨酸,这一直令研究人员感到困惑。在这里,我们使用 15N-1H 异核单量子相干 NMR 光谱学证明,RG-I-4 的多个位点为与 15N 标记的 Gal-3 的三个位点结合提供了表位,其中两个位于其碳水化合物识别结构域(CRD)内,一个位于 NT 内的新位点,该位点包含所有 Gal-3 物种中高度保守的前 40 个残基。此外,RG-I-4 与 Gal-3 NT 的强结合发生在非常缓慢的时间尺度上,这表明它可能由顺式-反式脯氨酸异构化介导,这是许多生物学活性的公认调节剂。RG-I-4 中与 NT 结合的表位似乎主要位于多糖的侧链中,其中一些是半乳糖聚糖。我们的结果为 NT 在 Gal-3 功能中的作用提供了新的见解。

相似文献

2
Galectin-3 N-terminal tail prolines modulate cell activity and glycan-mediated oligomerization/phase separation.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2021074118.
3
Isomerization of proline-46 in the N-terminal tail of galectin-3 enhances T cell apoptosis via the ROS-ERK pathway.
Int J Biol Macromol. 2024 Jan;256(Pt 1):128304. doi: 10.1016/j.ijbiomac.2023.128304. Epub 2023 Nov 20.
7
Structure-activity relationship of Citrus segment membrane RG-I pectin against Galectin-3: The galactan is not the only important factor.
Carbohydr Polym. 2020 Oct 1;245:116526. doi: 10.1016/j.carbpol.2020.116526. Epub 2020 Jun 5.
8
Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner.
Biochem Biophys Res Commun. 2014 Jan 3;443(1):126-31. doi: 10.1016/j.bbrc.2013.11.063. Epub 2013 Nov 22.
10
Intra- and intermolecular interactions of human galectin-3: assessment by full-assignment-based NMR.
Glycobiology. 2016 Aug;26(8):888-903. doi: 10.1093/glycob/cww021. Epub 2016 Feb 23.

引用本文的文献

1
Heterologous Interactions with Galectins and Chemokines and Their Functional Consequences.
Int J Mol Sci. 2023 Sep 14;24(18):14083. doi: 10.3390/ijms241814083.
2
An Oral Galectin Inhibitor in COVID-19-A Phase II Randomized Controlled Trial.
Vaccines (Basel). 2023 Mar 25;11(4):731. doi: 10.3390/vaccines11040731.
3
Galectin-3 inhibition as a potential therapeutic target in non-alcoholic steatohepatitis liver fibrosis.
World J Hepatol. 2023 Feb 27;15(2):201-207. doi: 10.4254/wjh.v15.i2.201.
9
Galectins as Molecular Targets for Therapeutic Intervention.
Int J Mol Sci. 2018 Mar 19;19(3):905. doi: 10.3390/ijms19030905.

本文引用的文献

2
Multiple approaches to assess pectin binding to galectin-3.
Int J Biol Macromol. 2016 Oct;91:994-1001. doi: 10.1016/j.ijbiomac.2016.06.058. Epub 2016 Jun 18.
3
Intra- and intermolecular interactions of human galectin-3: assessment by full-assignment-based NMR.
Glycobiology. 2016 Aug;26(8):888-903. doi: 10.1093/glycob/cww021. Epub 2016 Feb 23.
4
Kinetic Studies on CphA Mutants Reveal the Role of the P158-P172 Loop in Activity versus Carbapenems.
Antimicrob Agents Chemother. 2016 Apr 22;60(5):3123-6. doi: 10.1128/AAC.01703-15. Print 2016 May.
6
Chemical Tools To Decipher Regulation of Phosphatases by Proline Isomerization on Eukaryotic RNA Polymerase II.
ACS Chem Biol. 2015 Oct 16;10(10):2405-14. doi: 10.1021/acschembio.5b00296. Epub 2015 Sep 15.
7
Penultimate proline in neuropeptides.
Anal Chem. 2015 Aug 18;87(16):8466-72. doi: 10.1021/acs.analchem.5b01889. Epub 2015 Jul 29.
8
The dark and bright side of atherosclerotic calcification.
Atherosclerosis. 2015 Feb;238(2):220-30. doi: 10.1016/j.atherosclerosis.2014.12.011. Epub 2014 Dec 12.
9
Functions of galectin-3 and its role in fibrotic diseases.
J Pharmacol Exp Ther. 2014 Nov;351(2):336-43. doi: 10.1124/jpet.114.218370. Epub 2014 Sep 5.
10
Proline-rich region of non-muscle myosin light chain kinase modulates kinase activity and endothelial cytoskeletal dynamics.
Microvasc Res. 2014 Sep;95:94-102. doi: 10.1016/j.mvr.2014.07.007. Epub 2014 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验