Suppr超能文献

编辑精选:使用随机森林和人工神经网络鉴定不同吡咯里西啶生物碱的结构特异性肝毒性潜力。

Editor's Highlight: Identification of Any Structure-Specific Hepatotoxic Potential of Different Pyrrolizidine Alkaloids Using Random Forests and Artificial Neural Networks.

机构信息

Max Zeller Söhne AG, CH 8590 Romanshorn, Switzerland.

Department of Clinical Pharmacology, University Hospital Basel, CH 4031 Basel, Switzerland.

出版信息

Toxicol Sci. 2017 Dec 1;160(2):361-370. doi: 10.1093/toxsci/kfx187.

Abstract

Pyrrolizidine alkaloids (PAs) are characteristic metabolites of some plant families and form a powerful defense mechanism against herbivores. More than 600 different PAs are known. PAs are ester alkaloids composed of a necine base and a necic acid, which can be used to divide PAs in different structural subcategories. The main target organs for PA metabolism and toxicity are liver and lungs. Additionally, PAs are potentially genotoxic, carcinogenic and exhibit developmental toxicity. Only for very few PAs, in vitro and in vivo investigations have characterized their toxic potential. However, these investigations suggest that structural differences have an influence on the toxicity of single PAs. To investigate this structural relationship for a large number of PAs, a quantitative structural-activity relationship (QSAR) analysis for hepatotoxicity of over 600 different PAs was performed, using Random Forest- and artificial Neural Networks-algorithms. These models were trained with a recently established dataset specific for acute hepatotoxicity in humans. Using this dataset, a set of molecular predictors was identified to predict the hepatotoxic potential of each compound in validated QSAR models. Based on these models, the hepatotoxic potential of the 602 PAs was predicted and the following hepatotoxic rank order in 3 main categories defined (1) for necine base: otonecine > retronecine > platynecine; (2) for necine base modification: dehydropyrrolizidine ≫ tertiary PA = N-oxide; and (3) for necic acid: macrocyclic diester ≥ open-ring diester > monoester. A further analysis with combined structural features revealed that necic acid has a higher influence on the acute hepatotoxicity than the necine base.

摘要

吡咯里西啶生物碱(PAs)是一些植物科的特征代谢物,形成了一种强大的防御机制,以抵御草食动物。已知有 600 多种不同的 PAs。PAs 是酯生物碱,由一个生物碱和一个酸组成,可用于将 PAs 分为不同的结构亚类。PA 代谢和毒性的主要靶器官是肝脏和肺部。此外,PAs 具有潜在的遗传毒性、致癌性和发育毒性。只有极少数 PAs 进行了体外和体内研究,以确定其毒性潜力。然而,这些研究表明,结构差异对单一 PAs 的毒性有影响。为了研究大量 PAs 的这种结构关系,使用随机森林和人工神经网络算法对超过 600 种不同 PAs 的肝毒性进行了定量构效关系(QSAR)分析。这些模型是用最近建立的特定于人类急性肝毒性的数据集进行训练的。使用该数据集,确定了一组分子预测因子,用于在验证的 QSAR 模型中预测每个化合物的肝毒性潜力。基于这些模型,预测了 602 种 PAs 的肝毒性潜力,并在 3 个主要类别中定义了以下肝毒性排序顺序:(1)对于生物碱:otonecine > retronecine > platynecine;(2)对于生物碱修饰:脱水吡咯里西啶> 三级 PA = 氧化物;和(3)对于酸:大环二酯≥开环二酯> 单酯。进一步的综合结构特征分析表明,酸对急性肝毒性的影响大于生物碱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验