Suppr超能文献

建模 AMPK 激活的结构-活性关系。

Modeling Structure-Activity Relationship of AMPK Activation.

机构信息

Medical Department, Max Zeller Söhne AG, CH-8590 Romanshorn, Switzerland.

Independent Researcher, D-79427 Eschbach, Germany.

出版信息

Molecules. 2021 Oct 28;26(21):6508. doi: 10.3390/molecules26216508.

Abstract

The adenosine monophosphate activated protein kinase (AMPK) is critical in the regulation of important cellular functions such as lipid, glucose, and protein metabolism; mitochondrial biogenesis and autophagy; and cellular growth. In many diseases-such as metabolic syndrome, obesity, diabetes, and also cancer-activation of AMPK is beneficial. Therefore, there is growing interest in AMPK activators that act either by direct action on the enzyme itself or by indirect activation of upstream regulators. Many natural compounds have been described that activate AMPK indirectly. These compounds are usually contained in mixtures with a variety of structurally different other compounds, which in turn can also alter the activity of AMPK via one or more pathways. For these compounds, experiments are complicated, since the required pure substances are often not yet isolated and/or therefore not sufficiently available. Therefore, our goal was to develop a screening tool that could handle the profound heterogeneity in activation pathways of the AMPK. Since machine learning algorithms can model complex (unknown) relationships and patterns, some of these methods (random forest, support vector machines, stochastic gradient boosting, logistic regression, and deep neural network) were applied and validated using a database, comprising of 904 activating and 799 neutral or inhibiting compounds identified by extensive PubMed literature search and PubChem Bioassay database. All models showed unexpectedly high classification accuracy in training, but more importantly in predicting the unseen test data. These models are therefore suitable tools for rapid in silico screening of established substances or multicomponent mixtures and can be used to identify compounds of interest for further testing.

摘要

腺苷单磷酸激活的蛋白激酶 (AMPK) 在调节重要的细胞功能方面起着关键作用,如脂质、葡萄糖和蛋白质代谢;线粒体生物发生和自噬;以及细胞生长。在许多疾病中,如代谢综合征、肥胖症、糖尿病,甚至癌症,激活 AMPK 是有益的。因此,人们对 AMPK 激活剂越来越感兴趣,这些激活剂可以通过直接作用于酶本身或间接激活上游调节剂来发挥作用。已经描述了许多可以间接激活 AMPK 的天然化合物。这些化合物通常包含在与各种结构不同的其他化合物的混合物中,而这些化合物也可以通过一种或多种途径改变 AMPK 的活性。对于这些化合物,实验变得复杂,因为所需的纯物质通常尚未分离出来,因此也没有足够的供应。因此,我们的目标是开发一种筛选工具,可以处理 AMPK 激活途径的巨大异质性。由于机器学习算法可以模拟复杂的(未知)关系和模式,因此应用了其中一些方法(随机森林、支持向量机、随机梯度增强、逻辑回归和深度神经网络),并使用包含 904 种激活化合物和 799 种中性或抑制化合物的数据库进行了验证,这些化合物是通过广泛的 PubMed 文献搜索和 PubChem 生物测定数据库确定的。所有模型在训练中都表现出出乎意料的高分类准确性,但更重要的是在预测未见的测试数据方面。因此,这些模型是快速进行基于计算机的现有物质或多成分混合物筛选的合适工具,可用于识别有进一步测试价值的化合物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验