Howlett Evan H, Jensen Nicholas, Belmonte Frances, Zafar Faria, Hu Xiaoping, Kluss Jillian, Schüle Birgitt, Kaufman Brett A, Greenamyre J T, Sanders Laurie H
Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases.
Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Hum Mol Genet. 2017 Nov 15;26(22):4340-4351. doi: 10.1093/hmg/ddx320.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with increased risk for developing Parkinson's disease (PD). Previously, we found that LRRK2 G2019S mutation carriers have increased mitochondrial DNA (mtDNA) damage and after zinc finger nuclease-mediated gene mutation correction, mtDNA damage was no longer detectable. While the mtDNA damage phenotype can be unambiguously attributed to the LRRK2 G2019S mutation, the underlying mechanism(s) is unknown. Here, we examine the role of LRRK2 kinase function in LRRK2 G2019S-mediated mtDNA damage, using both genetic and pharmacological approaches in cultured neurons and PD patient-derived cells. Expression of LRRK2 G2019S induced mtDNA damage in primary rat midbrain neurons, but not in cortical neuronal cultures. In contrast, the expression of LRRK2 wild type or LRRK2 D1994A mutant (kinase dead) had no effect on mtDNA damage in either midbrain or cortical neuronal cultures. In addition, human LRRK2 G2019S patient-derived lymphoblastoid cell lines (LCL) demonstrated increased mtDNA damage relative to age-matched controls. Importantly, treatment of LRRK2 G2019S expressing midbrain neurons or patient-derived LRRK2 G2019S LCLs with the LRRK2 kinase inhibitor GNE-7915, either prevented or restored mtDNA damage to control levels. These findings support the hypothesis that LRRK2 G2019S-induced mtDNA damage is LRRK2 kinase activity dependent, uncovering a novel pathological role for this kinase. Blocking or reversing mtDNA damage via LRRK2 kinase inhibition or other therapeutic approaches may be useful to slow PD-associated pathology.
富含亮氨酸重复激酶2(LRRK2)的突变与帕金森病(PD)发病风险增加相关。此前,我们发现LRRK2 G2019S突变携带者的线粒体DNA(mtDNA)损伤增加,而在锌指核酸酶介导的基因突变校正后,mtDNA损伤不再可检测到。虽然mtDNA损伤表型可明确归因于LRRK2 G2019S突变,但其潜在机制尚不清楚。在此,我们使用培养的神经元和PD患者来源的细胞中的遗传和药理学方法,研究LRRK2激酶功能在LRRK2 G2019S介导的mtDNA损伤中的作用。LRRK2 G2019S的表达在原代大鼠中脑神经元中诱导mtDNA损伤,但在皮质神经元培养物中未诱导。相反,LRRK2野生型或LRRK2 D1994A突变体(激酶失活)的表达对中脑或皮质神经元培养物中的mtDNA损伤均无影响。此外,与年龄匹配的对照相比,来自LRRK2 G2019S患者的人淋巴母细胞系(LCL)显示出mtDNA损伤增加。重要的是,用LRRK2激酶抑制剂GNE - 7915处理表达LRRK2 G2019S的中脑神经元或患者来源的LRRK2 G2019S LCL,可预防或使mtDNA损伤恢复至对照水平。这些发现支持了LRRK2 G2019S诱导的mtDNA损伤依赖于LRRK2激酶活性的假说,揭示了该激酶的一种新的病理作用。通过抑制LRRK2激酶或其他治疗方法阻断或逆转mtDNA损伤可能有助于减缓与PD相关的病理过程。